Induction of a ribosome-inactivating protein upon environmental stress

Induction of a ribosome-inactivating protein upon environmental stress Transcripts of altered abundance in RNA from unstressed and 500 mm salt-shocked Mesembryanthemum crystallinum (common ice plant) were detected by reverse-transcription differential display (RT-DD). One transcript, Rip1, was of very low abundance in unstressed plants and was strongly induced by stress. RNA blot hybridizations showed strong induction and a diurnal rhythm of transcript abundance with a maximum each day around the middle of the light phase. Rip1 encodes a reading frame of 289 amino acids (molecular mass 32652), RIP1, with homology to single-chain ribosome inactivating proteins (rRNA N-glycosidases). The deduced amino acid sequence is 31.7% identical to pokeweed antiviral protein RIP-C (overall similarity 66.5%) with highest identity in domains of documented functional importance. RT-DD also detected mRNA for pyruvate,orthophosphate dikinase (PPDK) which has already been shown to be stress-induced in the ice plant [16]. RIP1, expressed in Escherichia coli, showed rRNA N-glycosidase activity against ice plant and rabbit reticulocyte ribosomes. The induction of Rip1 coincides with the transition period during which global changes in translation lead to adaptation of the ice plant to salt stress. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Induction of a ribosome-inactivating protein upon environmental stress

Loading next page...
 
/lp/springer_journal/induction-of-a-ribosome-inactivating-protein-upon-environmental-stress-Fodd071rbv
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005871023944
Publisher site
See Article on Publisher Site

Abstract

Transcripts of altered abundance in RNA from unstressed and 500 mm salt-shocked Mesembryanthemum crystallinum (common ice plant) were detected by reverse-transcription differential display (RT-DD). One transcript, Rip1, was of very low abundance in unstressed plants and was strongly induced by stress. RNA blot hybridizations showed strong induction and a diurnal rhythm of transcript abundance with a maximum each day around the middle of the light phase. Rip1 encodes a reading frame of 289 amino acids (molecular mass 32652), RIP1, with homology to single-chain ribosome inactivating proteins (rRNA N-glycosidases). The deduced amino acid sequence is 31.7% identical to pokeweed antiviral protein RIP-C (overall similarity 66.5%) with highest identity in domains of documented functional importance. RT-DD also detected mRNA for pyruvate,orthophosphate dikinase (PPDK) which has already been shown to be stress-induced in the ice plant [16]. RIP1, expressed in Escherichia coli, showed rRNA N-glycosidase activity against ice plant and rabbit reticulocyte ribosomes. The induction of Rip1 coincides with the transition period during which global changes in translation lead to adaptation of the ice plant to salt stress.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off