Induction heating in a wire additive manufacturing approach

Induction heating in a wire additive manufacturing approach In additive manufacturing (AM), three-dimensional objects are built layer by layer by joining each layer to the previous one. For metal parts, there are three main methods: powder bed, powder deposition, and wire deposition. This latter makes optimal use of the material in contrast to other processes, which makes it very interesting industrially. Indeed, with powder, the ratio between powder used and powder melted is not equal to one, in opposition of the use of wire. In order to ensure the proper melting of the metal, several methods already exist, including the use of lasers or electric arc. This paper presents a novel approach of wire deposition using inductive energy for additive manufacturing applications. This approach does not make use of a storage of the molten material. Instead, the tip of a metal wire is melted by an induction heating system. Inductive energy is also used to obtain an optimal thermal gradient between the tip of the wire and the substrate or previous layer. A numerical model has been developed and validated experimentally. It shows that the induction heating system is able to melt the tip of the wire and heat the substrate to create suitable deposition. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Welding in the World Springer Journals

Induction heating in a wire additive manufacturing approach

Loading next page...
 
/lp/springer_journal/induction-heating-in-a-wire-additive-manufacturing-approach-d2wVM7DAdj
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by International Institute of Welding
Subject
Materials Science; Metallic Materials; Continuum Mechanics and Mechanics of Materials; Theoretical and Applied Mechanics
ISSN
0043-2288
eISSN
1878-6669
D.O.I.
10.1007/s40194-017-0533-y
Publisher site
See Article on Publisher Site

Abstract

In additive manufacturing (AM), three-dimensional objects are built layer by layer by joining each layer to the previous one. For metal parts, there are three main methods: powder bed, powder deposition, and wire deposition. This latter makes optimal use of the material in contrast to other processes, which makes it very interesting industrially. Indeed, with powder, the ratio between powder used and powder melted is not equal to one, in opposition of the use of wire. In order to ensure the proper melting of the metal, several methods already exist, including the use of lasers or electric arc. This paper presents a novel approach of wire deposition using inductive energy for additive manufacturing applications. This approach does not make use of a storage of the molten material. Instead, the tip of a metal wire is melted by an induction heating system. Inductive energy is also used to obtain an optimal thermal gradient between the tip of the wire and the substrate or previous layer. A numerical model has been developed and validated experimentally. It shows that the induction heating system is able to melt the tip of the wire and heat the substrate to create suitable deposition.

Journal

Welding in the WorldSpringer Journals

Published: Dec 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off