Inducing gas flow and swirl in tubes using ionic wind from corona discharges

Inducing gas flow and swirl in tubes using ionic wind from corona discharges Air induction and rotation about the axis of a vertical tube is generated by an assembly of corona discharges between pinpoints and earthed electrodes, which induces a swirling ionic wind. The mechanism is elucidated and the geometrical configuration of the electric field lines of force is optimised by studying the deposition of charged particles on the earth electrodes, by numerical modelling of a simplified geometry and ultimately by maximising the measured tangential velocities. Upward convective flows of up to a litre per second are provided by an additional ionic wind pump at the base of the tube. With assemblies of up to three layers of six points each, tangential velocities of up to 3.3 m/s (≈900 rpm) are attained at the periphery, as recorded by small Pitot tubes. The concept, developed particularly for microgravity environments, appears suitable for adding a substantial centrifugal contribution to the operation of electrostatic precipitators and as a basis for further progress on electrical field-controlled burners. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Inducing gas flow and swirl in tubes using ionic wind from corona discharges

Loading next page...
 
/lp/springer_journal/inducing-gas-flow-and-swirl-in-tubes-using-ionic-wind-from-corona-eZ6J4IVAGp
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-005-0062-0
Publisher site
See Article on Publisher Site

Abstract

Air induction and rotation about the axis of a vertical tube is generated by an assembly of corona discharges between pinpoints and earthed electrodes, which induces a swirling ionic wind. The mechanism is elucidated and the geometrical configuration of the electric field lines of force is optimised by studying the deposition of charged particles on the earth electrodes, by numerical modelling of a simplified geometry and ultimately by maximising the measured tangential velocities. Upward convective flows of up to a litre per second are provided by an additional ionic wind pump at the base of the tube. With assemblies of up to three layers of six points each, tangential velocities of up to 3.3 m/s (≈900 rpm) are attained at the periphery, as recorded by small Pitot tubes. The concept, developed particularly for microgravity environments, appears suitable for adding a substantial centrifugal contribution to the operation of electrostatic precipitators and as a basis for further progress on electrical field-controlled burners.

Journal

Experiments in FluidsSpringer Journals

Published: Dec 13, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off