Inducible viral inoculation system with cultured plant cells facilitates a biochemical approach for virus-induced RNA silencing

Inducible viral inoculation system with cultured plant cells facilitates a biochemical approach... An inducible virus infection system was demonstrated to be an efficient protein expression system for inducing synchronous virus vector multiplication in suspension-cultured plant cells. A GFP-tagged tomato mosaic virus (ToMV-GFP) derivative that has a defect in its 130 K protein, a silencing suppressor of ToMV, was synchronously infected to tobacco BY2 cultured cells using this system. In the infection-induced cells, viral RNA was degraded rapidly, and a cytosol extract prepared from the infected cells showed RNA degradation activity specific for ToMV- or GFP-related sequences. In lysate prepared from cells infected by ToMV-GFP carrying the wild-type 130 K protein, sequence-specific RNA degradation activity was suppressed, although siRNA derived from the virus was generated. Furthermore, the 130 K protein interfered with 3′-end methylation of siRNA. The inducible virus infection system may provide a method for biochemical analysis of antiviral RNA silencing and silencing suppression by ToMV. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Inducible viral inoculation system with cultured plant cells facilitates a biochemical approach for virus-induced RNA silencing

Loading next page...
 
/lp/springer_journal/inducible-viral-inoculation-system-with-cultured-plant-cells-Myz4pcuCuf
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Biomedicine; Infectious Diseases; Medical Microbiology ; Virology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-009-0585-4
Publisher site
See Article on Publisher Site

Abstract

An inducible virus infection system was demonstrated to be an efficient protein expression system for inducing synchronous virus vector multiplication in suspension-cultured plant cells. A GFP-tagged tomato mosaic virus (ToMV-GFP) derivative that has a defect in its 130 K protein, a silencing suppressor of ToMV, was synchronously infected to tobacco BY2 cultured cells using this system. In the infection-induced cells, viral RNA was degraded rapidly, and a cytosol extract prepared from the infected cells showed RNA degradation activity specific for ToMV- or GFP-related sequences. In lysate prepared from cells infected by ToMV-GFP carrying the wild-type 130 K protein, sequence-specific RNA degradation activity was suppressed, although siRNA derived from the virus was generated. Furthermore, the 130 K protein interfered with 3′-end methylation of siRNA. The inducible virus infection system may provide a method for biochemical analysis of antiviral RNA silencing and silencing suppression by ToMV.

Journal

Archives of VirologySpringer Journals

Published: Mar 1, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off