Indexing spatiotemporal archives

Indexing spatiotemporal archives Spatiotemporal objects – that is, objects that evolve over time – appear in many applications. Due to the nature of such applications, storing the evolution of objects through time in order to answer historical queries (queries that refer to past states of the evolution) requires a very large specialized database, what is termed in this article a spatiotemporal archive . Efficient processing of historical queries on spatiotemporal archives requires equally sophisticated indexing schemes. Typical spatiotemporal indexing techniques represent the objects using minimum bounding regions (MBR) extended with a temporal dimension, which are then indexed using traditional multidimensional index structures. However, rough MBR approximations introduce excessive overlap between index nodes, which deteriorates query performance. This article introduces a robust indexing scheme for answering spatiotemporal queries more efficiently. A number of algorithms and heuristics are elaborated that can be used to preprocess a spatiotemporal archive in order to produce finer object approximations , which, in combination with a multiversion index structure , will greatly improve query performance in comparison to the straightforward approaches. The proposed techniques introduce a query efficiency vs. space tradeoff that can help tune a structure according to available resources. Empirical observations for estimating the necessary amount of additional storage space required for improving query performance by a given factor are also provided. Moreover, heuristics for applying the proposed ideas in an online setting are discussed. Finally, a thorough experimental evaluation is conducted to show the merits of the proposed techniques. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Loading next page...
 
/lp/springer_journal/indexing-spatiotemporal-archives-cldkk0tjy4
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-004-0151-3
Publisher site
See Article on Publisher Site

Abstract

Spatiotemporal objects – that is, objects that evolve over time – appear in many applications. Due to the nature of such applications, storing the evolution of objects through time in order to answer historical queries (queries that refer to past states of the evolution) requires a very large specialized database, what is termed in this article a spatiotemporal archive . Efficient processing of historical queries on spatiotemporal archives requires equally sophisticated indexing schemes. Typical spatiotemporal indexing techniques represent the objects using minimum bounding regions (MBR) extended with a temporal dimension, which are then indexed using traditional multidimensional index structures. However, rough MBR approximations introduce excessive overlap between index nodes, which deteriorates query performance. This article introduces a robust indexing scheme for answering spatiotemporal queries more efficiently. A number of algorithms and heuristics are elaborated that can be used to preprocess a spatiotemporal archive in order to produce finer object approximations , which, in combination with a multiversion index structure , will greatly improve query performance in comparison to the straightforward approaches. The proposed techniques introduce a query efficiency vs. space tradeoff that can help tune a structure according to available resources. Empirical observations for estimating the necessary amount of additional storage space required for improving query performance by a given factor are also provided. Moreover, heuristics for applying the proposed ideas in an online setting are discussed. Finally, a thorough experimental evaluation is conducted to show the merits of the proposed techniques.

Journal

The VLDB JournalSpringer Journals

Published: Jun 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off