Indexing Multidimensional Time-Series

Indexing Multidimensional Time-Series While most time series data mining research has concentrated on providing solutions for a single distance function, in this work we motivate the need for an index structure that can support multiple distance measures. Our specific area of interest is the efficient retrieval and analysis of similar trajectories. Trajectory datasets are very common in environmental applications, mobility experiments, and video surveillance and are especially important for the discovery of certain biological patterns. Our primary similarity measure is based on the longest common subsequence (LCSS) model that offers enhanced robustness, particularly for noisy data, which are encountered very often in real-world applications. However, our index is able to accommodate other distance measures as well, including the ubiquitous Euclidean distance and the increasingly popular dynamic time warping (DTW). While other researchers have advocated one or other of these similarity measures, a major contribution of our work is the ability to support all these measures without the need to restructure the index. Our framework guarantees no false dismissals and can also be tailored to provide much faster response time at the expense of slightly reduced precision/recall. The experimental results demonstrate that our index can help speed up the computation of expensive similarity measures such as the LCSS and the DTW. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals
Loading next page...
 
/lp/springer_journal/indexing-multidimensional-time-series-XREXf9D5A8
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-004-0144-2
Publisher site
See Article on Publisher Site

Abstract

While most time series data mining research has concentrated on providing solutions for a single distance function, in this work we motivate the need for an index structure that can support multiple distance measures. Our specific area of interest is the efficient retrieval and analysis of similar trajectories. Trajectory datasets are very common in environmental applications, mobility experiments, and video surveillance and are especially important for the discovery of certain biological patterns. Our primary similarity measure is based on the longest common subsequence (LCSS) model that offers enhanced robustness, particularly for noisy data, which are encountered very often in real-world applications. However, our index is able to accommodate other distance measures as well, including the ubiquitous Euclidean distance and the increasingly popular dynamic time warping (DTW). While other researchers have advocated one or other of these similarity measures, a major contribution of our work is the ability to support all these measures without the need to restructure the index. Our framework guarantees no false dismissals and can also be tailored to provide much faster response time at the expense of slightly reduced precision/recall. The experimental results demonstrate that our index can help speed up the computation of expensive similarity measures such as the LCSS and the DTW.

Journal

The VLDB JournalSpringer Journals

Published: Jan 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off