Indexing mobile objects using dual transformations

Indexing mobile objects using dual transformations With the recent advances in wireless networks, embedded systems, and GPS technology, databases that manage the location of moving objects have received increased interest. In this paper, we present indexing techniques for moving object databases. In particular, we propose methods to index moving objects in order to efficiently answer range queries about their current and future positions. This problem appears in real-life applications such as predicting future congestion areas in a highway system or allocating more bandwidth for areas where a high concentration of mobile phones is imminent. We address the problem in external memory and present dynamic solutions, both for the one-dimensional and the two-dimensional cases. Our approach transforms the problem into a dual space that is easier to index. Important in this dynamic environment is not only query performance but also the update processing, given the large number of moving objects that issue updates. We compare the dual-transformation approach with the TPR-tree, an efficient method for indexing moving objects that is based on time-parameterized index nodes. An experimental evaluation shows that the dual-transformation approach provides comparable query performance but has much faster update processing. Moreover, the dual method does not require establishing a predefined query horizon. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Indexing mobile objects using dual transformations

Loading next page...
 
/lp/springer_journal/indexing-mobile-objects-using-dual-transformations-1bjD2Yqp4Q
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-004-0139-z
Publisher site
See Article on Publisher Site

Abstract

With the recent advances in wireless networks, embedded systems, and GPS technology, databases that manage the location of moving objects have received increased interest. In this paper, we present indexing techniques for moving object databases. In particular, we propose methods to index moving objects in order to efficiently answer range queries about their current and future positions. This problem appears in real-life applications such as predicting future congestion areas in a highway system or allocating more bandwidth for areas where a high concentration of mobile phones is imminent. We address the problem in external memory and present dynamic solutions, both for the one-dimensional and the two-dimensional cases. Our approach transforms the problem into a dual space that is easier to index. Important in this dynamic environment is not only query performance but also the update processing, given the large number of moving objects that issue updates. We compare the dual-transformation approach with the TPR-tree, an efficient method for indexing moving objects that is based on time-parameterized index nodes. An experimental evaluation shows that the dual-transformation approach provides comparable query performance but has much faster update processing. Moreover, the dual method does not require establishing a predefined query horizon.

Journal

The VLDB JournalSpringer Journals

Published: Apr 1, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off