Index design and query processing for graph conductance search

Index design and query processing for graph conductance search Graph conductance queries, also known as personalized PageRank and related to random walks with restarts, were originally proposed to assign a hyperlink-based prestige score to Web pages. More general forms of such queries are also very useful for ranking in entity-relation (ER) graphs used to represent relational, XML and hypertext data. Evaluation of PageRank usually involves a global eigen computation. If the graph is even moderately large, interactive response times may not be possible. Recently, the need for interactive PageRank evaluation has increased. The graph may be fully known only when the query is submitted. Browsing actions of the user may change some inputs to the PageRank computation dynamically. In this paper, we describe a system that analyzes query workloads and the ER graph, invests in limited offline indexing, and exploits those indices to achieve essentially constant-time query processing, even as the graph size scales. Our techniques—data and query statistics collection, index selection and materialization, and query-time index exploitation—have parallels in the extensive relational query optimization literature, but is applied to supporting novel graph data repositories. We report on experiments with five temporal snapshots of the CiteSeer ER graph having 74–702 thousand entity nodes, 0.17–1.16 million word nodes, 0.29–3.26 million edges between entities, and 3.29–32.8 million edges between words and entities. We also used two million actual queries from CiteSeer ’s logs. Queries run 3–4 orders of magnitude faster than whole-graph PageRank, the gap growing with graph size. Index size is smaller than a text index. Ranking accuracy is 94–98% with reference to whole-graph PageRank. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Index design and query processing for graph conductance search

Loading next page...
 
/lp/springer_journal/index-design-and-query-processing-for-graph-conductance-search-H0txOMeN09
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-010-0204-8
Publisher site
See Article on Publisher Site

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial