Increases in summer temperatures decrease the survival of an invasive forest insect

Increases in summer temperatures decrease the survival of an invasive forest insect Higher temperatures projected under current climate change models are generally predicted to exert an overall positive effect on the success of invasive insects through increased survivability, developmental rates and fecundity, and by facilitating geographic range expansion. However, these effects have primarily focused on the shifts in winter temperatures with limited attention to the role that summer heat may play in shaping species ranges or fitness. We examined the thermal ecology of an ecologically important invasive forest insect, the hemlock woolly adelgid (Adelges tsugae), by determining survival during its summer dormancy phase under increasing temperature regimens. From laboratory and field experiments, we documented a positive association between increased temperatures and duration of exposure, and A. tsugae mortality. Adelges tsugae mortality was minimal (<20%) when exposed to summer temperatures characteristic to its native range (<25 °C), but markedly increased (up to 100%) when exposed to temperatures that occur occasionally or rarely in natural settings (>30 °C). At the warmest, southernmost edge of their range, field mortality of A. tsugae ranged from 8.5 to 81.9% and was strongly correlated with site temperature regimens. Further, we found no significant differences in A. tsugae survival between populations collected from Maine and Georgia, and over a 3-year period within Georgia, indicating that A. tsugae may not be acclimating to heat. These results highlight the importance of including summer temperatures in studies regarding increased temperatures on insect dynamics, and may alter historical predictions of climate change impacts on invasive insects and the conservation of forest ecosystems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biological Invasions Springer Journals

Increases in summer temperatures decrease the survival of an invasive forest insect

Loading next page...
 
/lp/springer_journal/increases-in-summer-temperatures-decrease-the-survival-of-an-invasive-pPM4ixsqHR
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing AG
Subject
Life Sciences; Ecology; Freshwater & Marine Ecology; Plant Sciences; Developmental Biology
ISSN
1387-3547
eISSN
1573-1464
D.O.I.
10.1007/s10530-017-1537-7
Publisher site
See Article on Publisher Site

Abstract

Higher temperatures projected under current climate change models are generally predicted to exert an overall positive effect on the success of invasive insects through increased survivability, developmental rates and fecundity, and by facilitating geographic range expansion. However, these effects have primarily focused on the shifts in winter temperatures with limited attention to the role that summer heat may play in shaping species ranges or fitness. We examined the thermal ecology of an ecologically important invasive forest insect, the hemlock woolly adelgid (Adelges tsugae), by determining survival during its summer dormancy phase under increasing temperature regimens. From laboratory and field experiments, we documented a positive association between increased temperatures and duration of exposure, and A. tsugae mortality. Adelges tsugae mortality was minimal (<20%) when exposed to summer temperatures characteristic to its native range (<25 °C), but markedly increased (up to 100%) when exposed to temperatures that occur occasionally or rarely in natural settings (>30 °C). At the warmest, southernmost edge of their range, field mortality of A. tsugae ranged from 8.5 to 81.9% and was strongly correlated with site temperature regimens. Further, we found no significant differences in A. tsugae survival between populations collected from Maine and Georgia, and over a 3-year period within Georgia, indicating that A. tsugae may not be acclimating to heat. These results highlight the importance of including summer temperatures in studies regarding increased temperatures on insect dynamics, and may alter historical predictions of climate change impacts on invasive insects and the conservation of forest ecosystems.

Journal

Biological InvasionsSpringer Journals

Published: Aug 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off