Increases in Intracellular pH and Ca2+ are Essential for K+ Channel Activation After Modest `Physiological' Swelling in Villus Epithelial Cells

Increases in Intracellular pH and Ca2+ are Essential for K+ Channel Activation After Modest... We studied the relationship between changes in intracellular pH (pH i ), intracellular Ca2+([Ca2+] i ) and charybdotoxin sensitive (CTX) maxi-K+ channels occurring after modest `physiological' swelling in guinea pig jejunal villus enterocytes. Villus cell volume was assessed by electronic cell sizing, and pH i and [Ca2+] i by fluorescence spectroscopy with 2,7, biscarboxyethyl-5-6-carboxyfluorescein and Indo-1, respectively. In a slightly (0.93 × isotonic) hypotonic medium, villus cells swelled to the same size they would reach during d-glucose or l-alanine absorption; the subsequent Regulatory Volume Decrease (RVD) was prevented by CTX. After the large volume increase in a more hypotonic (0.80 × isotonic) medium, RVD was unaffected by CTX. After modest swelling associated with 0.93 × isotonic dilution, the pH i alkalinized but N-5-methyl-isobutyl amiloride (MIA) prevented this ΔpH i and the subsequent RVD. Even in the presence of MIA, alkalinization with added NH4Cl permitted complete RVD which could be inhibited by CTX. The rate of 86Rb efflux which also increased after this 0.93 × isotonic dilution was inhibited an equivalent amount by CTX, MIA or Na+-free medium. Modest swelling transiently increased [Ca2+] i and Ca2+-free medium or blocking alkalinization by MIA or Na+-free medium diminished this transient increase an equivalent amount. RVD after modest swelling was prevented in Ca2+-free medium but alkalinization still occurred. After large volume increases, alkalinization of cells increased [Ca2+] i and volume changes became sensitive to CTX. We conclude that both alkalinization of pH i and increased [Ca2+] i observed with `physiological' volume increase are essential for the activation of CTX-sensitive maxi-K+ channels required for RVD. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Increases in Intracellular pH and Ca2+ are Essential for K+ Channel Activation After Modest `Physiological' Swelling in Villus Epithelial Cells

Loading next page...
 
/lp/springer_journal/increases-in-intracellular-ph-and-ca2-are-essential-for-k-channel-nqeII5vrku
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900582
Publisher site
See Article on Publisher Site

Abstract

We studied the relationship between changes in intracellular pH (pH i ), intracellular Ca2+([Ca2+] i ) and charybdotoxin sensitive (CTX) maxi-K+ channels occurring after modest `physiological' swelling in guinea pig jejunal villus enterocytes. Villus cell volume was assessed by electronic cell sizing, and pH i and [Ca2+] i by fluorescence spectroscopy with 2,7, biscarboxyethyl-5-6-carboxyfluorescein and Indo-1, respectively. In a slightly (0.93 × isotonic) hypotonic medium, villus cells swelled to the same size they would reach during d-glucose or l-alanine absorption; the subsequent Regulatory Volume Decrease (RVD) was prevented by CTX. After the large volume increase in a more hypotonic (0.80 × isotonic) medium, RVD was unaffected by CTX. After modest swelling associated with 0.93 × isotonic dilution, the pH i alkalinized but N-5-methyl-isobutyl amiloride (MIA) prevented this ΔpH i and the subsequent RVD. Even in the presence of MIA, alkalinization with added NH4Cl permitted complete RVD which could be inhibited by CTX. The rate of 86Rb efflux which also increased after this 0.93 × isotonic dilution was inhibited an equivalent amount by CTX, MIA or Na+-free medium. Modest swelling transiently increased [Ca2+] i and Ca2+-free medium or blocking alkalinization by MIA or Na+-free medium diminished this transient increase an equivalent amount. RVD after modest swelling was prevented in Ca2+-free medium but alkalinization still occurred. After large volume increases, alkalinization of cells increased [Ca2+] i and volume changes became sensitive to CTX. We conclude that both alkalinization of pH i and increased [Ca2+] i observed with `physiological' volume increase are essential for the activation of CTX-sensitive maxi-K+ channels required for RVD.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Nov 1, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off