Increased locus coeruleus tonic activity causes disengagement from a patch-foraging task

Increased locus coeruleus tonic activity causes disengagement from a patch-foraging task High levels of locus coeruleus (LC) tonic activity are associated with distraction and poor performance within a task. Adaptive gain theory (AGT; Aston-Jones & Cohen, 2005) suggests that this may reflect an adaptive function of the LC, encouraging search for more remunerative opportunities in times of low utility. Here, we examine whether stimulating LC tonic activity using designer receptors (DREADDs) promotes searching for better opportunities in a patch-foraging task as the value of a patch diminishes. The task required rats to decide repeatedly whether to exploit an immediate but depleting reward within a patch or to incur the cost of a time delay to travel to a new, fuller patch. Similar to behavior associated with high LC tonic activity in other tasks, we found that stimulating LC tonic activity impaired task performance, resulting in reduced task participation and increased response times and omission rates. However, this was accompanied by a more specific, predicted effect: a significant tendency to leave patches earlier, which was best explained by an increase in decision noise rather than a systematic bias to leave earlier (i.e., at higher values). This effect is consistent with the hypothesis that high LC tonic activity favors disengagement from current behavior, and the pursuit of alternatives, by augmenting processing noise. These results provide direct causal evidence for the relationship between LC tonic activity and flexible task switching proposed by AGT. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cognitive, Affective, & Behaviorial Neuroscience Springer Journals

Increased locus coeruleus tonic activity causes disengagement from a patch-foraging task

Loading next page...
 
/lp/springer_journal/increased-locus-coeruleus-tonic-activity-causes-disengagement-from-a-IeLkA1UHdv
Publisher
Springer Journals
Copyright
Copyright © 2017 by Psychonomic Society, Inc.
Subject
Psychology; Cognitive Psychology; Neurosciences
ISSN
1530-7026
eISSN
1531-135X
D.O.I.
10.3758/s13415-017-0531-y
Publisher site
See Article on Publisher Site

Abstract

High levels of locus coeruleus (LC) tonic activity are associated with distraction and poor performance within a task. Adaptive gain theory (AGT; Aston-Jones & Cohen, 2005) suggests that this may reflect an adaptive function of the LC, encouraging search for more remunerative opportunities in times of low utility. Here, we examine whether stimulating LC tonic activity using designer receptors (DREADDs) promotes searching for better opportunities in a patch-foraging task as the value of a patch diminishes. The task required rats to decide repeatedly whether to exploit an immediate but depleting reward within a patch or to incur the cost of a time delay to travel to a new, fuller patch. Similar to behavior associated with high LC tonic activity in other tasks, we found that stimulating LC tonic activity impaired task performance, resulting in reduced task participation and increased response times and omission rates. However, this was accompanied by a more specific, predicted effect: a significant tendency to leave patches earlier, which was best explained by an increase in decision noise rather than a systematic bias to leave earlier (i.e., at higher values). This effect is consistent with the hypothesis that high LC tonic activity favors disengagement from current behavior, and the pursuit of alternatives, by augmenting processing noise. These results provide direct causal evidence for the relationship between LC tonic activity and flexible task switching proposed by AGT.

Journal

Cognitive, Affective, & Behaviorial NeuroscienceSpringer Journals

Published: Sep 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off