Increase in simulation accuracy of self-starting motors used for relay protection and automatic equipment

Increase in simulation accuracy of self-starting motors used for relay protection and automatic... The main and, in real conditions, the only way to protect synchronous motors from voltage losses during a fault is a self-starting method. This method is widely used in industry, in particular, in petrochemical production. In this context, the role of simulation accuracy of the self-starting method for powerful synchronous motors as a part of real power system is considered. In the paper, a three-phase simulation of a large petrochemical enterprise is presented. Interruptions of synchronous motors of water pumps at such enterprises are not allowed; hence, two self-starting methods for powerful synchronous motors applicable in real power system are considered. The first self-starting method is used after a significant decrease or loss of bus voltage due to nearby fault. The second is used after interruption of power supply due to operation of automatic transfer switch or automatic reclosing; at that moment, the synchronous motors are disconnected from the power source for a certain time. This period of time is required for automatic transfer switch or automatic reclosing operation. According to the simulation results, settings of relay protection and emergency automatics of powerful synchronous motors have been changed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Electrical Engineering (Archiv fur Elektrotechnik) Springer Journals

Increase in simulation accuracy of self-starting motors used for relay protection and automatic equipment

Loading next page...
 
/lp/springer_journal/increase-in-simulation-accuracy-of-self-starting-motors-used-for-relay-ewsPrQ3eQw
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Electrical Engineering; Power Electronics, Electrical Machines and Networks; Energy Economics
ISSN
0948-7921
eISSN
1432-0487
D.O.I.
10.1007/s00202-016-0464-4
Publisher site
See Article on Publisher Site

Abstract

The main and, in real conditions, the only way to protect synchronous motors from voltage losses during a fault is a self-starting method. This method is widely used in industry, in particular, in petrochemical production. In this context, the role of simulation accuracy of the self-starting method for powerful synchronous motors as a part of real power system is considered. In the paper, a three-phase simulation of a large petrochemical enterprise is presented. Interruptions of synchronous motors of water pumps at such enterprises are not allowed; hence, two self-starting methods for powerful synchronous motors applicable in real power system are considered. The first self-starting method is used after a significant decrease or loss of bus voltage due to nearby fault. The second is used after interruption of power supply due to operation of automatic transfer switch or automatic reclosing; at that moment, the synchronous motors are disconnected from the power source for a certain time. This period of time is required for automatic transfer switch or automatic reclosing operation. According to the simulation results, settings of relay protection and emergency automatics of powerful synchronous motors have been changed.

Journal

Electrical Engineering (Archiv fur Elektrotechnik)Springer Journals

Published: Oct 27, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off