Inability of rat DPP4 to allow MERS-CoV infection revealed by using a VSV pseudotype bearing truncated MERS-CoV spike protein

Inability of rat DPP4 to allow MERS-CoV infection revealed by using a VSV pseudotype bearing... Middle East respiratory syndrome (MERS) coronavirus (Co-V) contains a single spike (S) protein, which binds to a receptor molecule, dipeptidyl peptidase 4 (DPP4; also known as CD26), and serves as a neutralizing antigen. Pseudotyped viruses are useful for measuring neutralization titers against highly infectious viruses as well as for studying their mechanism of entry. In this study, we constructed a series of cytoplasmic deletion mutants of MERS-CoV S and compared the efficiency with which they formed pseudotypes with vesicular stomatitis virus. A pseudotype bearing an S protein with the C-terminal 16 amino acids deleted (MERSpv-St16) reached a maximum titer that was approximately tenfold higher than that of a pseudotype bearing a non-truncated full-length S protein. Using MERSpv-St16, we demonstrated the inability of rat DPP4 to serve as a functional receptor for MERS-CoV, suggesting that rats are not susceptible to MERS-CoV infection. This study provides novel information that enhances our understanding of the host range of MERS-CoV. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Inability of rat DPP4 to allow MERS-CoV infection revealed by using a VSV pseudotype bearing truncated MERS-CoV spike protein

Loading next page...
 
/lp/springer_journal/inability-of-rat-dpp4-to-allow-mers-cov-infection-revealed-by-using-a-Nt95GFb20M
Publisher
Springer Vienna
Copyright
Copyright © 2015 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-015-2506-z
Publisher site
See Article on Publisher Site

Abstract

Middle East respiratory syndrome (MERS) coronavirus (Co-V) contains a single spike (S) protein, which binds to a receptor molecule, dipeptidyl peptidase 4 (DPP4; also known as CD26), and serves as a neutralizing antigen. Pseudotyped viruses are useful for measuring neutralization titers against highly infectious viruses as well as for studying their mechanism of entry. In this study, we constructed a series of cytoplasmic deletion mutants of MERS-CoV S and compared the efficiency with which they formed pseudotypes with vesicular stomatitis virus. A pseudotype bearing an S protein with the C-terminal 16 amino acids deleted (MERSpv-St16) reached a maximum titer that was approximately tenfold higher than that of a pseudotype bearing a non-truncated full-length S protein. Using MERSpv-St16, we demonstrated the inability of rat DPP4 to serve as a functional receptor for MERS-CoV, suggesting that rats are not susceptible to MERS-CoV infection. This study provides novel information that enhances our understanding of the host range of MERS-CoV.

Journal

Archives of VirologySpringer Journals

Published: Jul 4, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off