In vivo whole-field blood velocity measurement techniques

In vivo whole-field blood velocity measurement techniques In this article a number of whole-field blood velocity measurement techniques are concisely reviewed. We primarily focus on optical measurement techniques for in vivo applications, such as laser Doppler velocimetry (including time varying speckle), laser speckle contrast imaging and particle image velocimetry (including particle tracking). We also briefly describe nuclear magnetic resonance and ultrasound particle image velocimetry, two techniques that do not rely on optical access, but that are of importance to in vivo whole-field blood velocity measurement. Typical applications for whole-field methods are perfusion monitoring, the investigation of instantaneous blood flow patterns, the derivation of endothelial shear stress distributions from velocity fields, and the measurement of blood volume flow rates. These applications require individual treatment in terms of spatial and temporal resolution and number of measured velocity components. The requirements further differ for the investigation of macro-, meso-, and microscale blood flows. In this review we describe and classify those requirements and present techniques that satisfy them. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

In vivo whole-field blood velocity measurement techniques

Loading next page...
 
/lp/springer_journal/in-vivo-whole-field-blood-velocity-measurement-techniques-TUkLMuEs6h
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-007-0276-4
Publisher site
See Article on Publisher Site

Abstract

In this article a number of whole-field blood velocity measurement techniques are concisely reviewed. We primarily focus on optical measurement techniques for in vivo applications, such as laser Doppler velocimetry (including time varying speckle), laser speckle contrast imaging and particle image velocimetry (including particle tracking). We also briefly describe nuclear magnetic resonance and ultrasound particle image velocimetry, two techniques that do not rely on optical access, but that are of importance to in vivo whole-field blood velocity measurement. Typical applications for whole-field methods are perfusion monitoring, the investigation of instantaneous blood flow patterns, the derivation of endothelial shear stress distributions from velocity fields, and the measurement of blood volume flow rates. These applications require individual treatment in terms of spatial and temporal resolution and number of measured velocity components. The requirements further differ for the investigation of macro-, meso-, and microscale blood flows. In this review we describe and classify those requirements and present techniques that satisfy them.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 1, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off