In vivo study of hybrid biomaterial scaffold bioactive glass–chitosan after incorporation of Ciprofloxacin

In vivo study of hybrid biomaterial scaffold bioactive glass–chitosan after incorporation of... The present study aimed to evaluate the effect of bioactive glass as well as the presence of Ciprofloxacin drug (%Cip) into bioactive glass–chitosan composite on the in vivo behavior of these scaffolds. These scaffolds were implanted in the femoral condyl of an ovariectomized rat. The serum and organs (liver and kidney) of the under investigated rats were analyzed. Also the physicochemical properties of the prepared implants were assessed using Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) before and after implantation (at different periods of implantation). Biochemical and histological analyses of the under investigated rats proved the biocompatibility of the prepared scaffolds. The hydroxyapatite like layer was significantly precipitated on the surface of BG–CH scaffold than BG–CH–20Cip. In this same period, FT-IR of BG–CH shows complete disappearance of Si–O–Si. Their characteristics bands were replaced by P–O group arisen form bone apatite bands. Physicochemical results show progressive degradation of BG–CH and BG–CH–20Cip that occurred at the same time as replacement of the implant by an apatite layer. However, the bioresorbability and bioactivity of BG–CH are faster than those of BG–CH–20Cip. Therefore, the incorporation of the Ciprofloxacin in the BG–CH induces a retarding effect on the formation of the hydroxyapatite, and consequently on the ossification, without any side effects on the liver–kidney. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymer Bulletin Springer Journals

In vivo study of hybrid biomaterial scaffold bioactive glass–chitosan after incorporation of Ciprofloxacin

Loading next page...
 
/lp/springer_journal/in-vivo-study-of-hybrid-biomaterial-scaffold-bioactive-glass-chitosan-gzSARNLcGD
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Chemistry; Polymer Sciences; Soft and Granular Matter, Complex Fluids and Microfluidics; Characterization and Evaluation of Materials; Physical Chemistry; Organic Chemistry
ISSN
0170-0839
eISSN
1436-2449
D.O.I.
10.1007/s00289-017-1936-z
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial