In vivo biomechanical comparison of hammering vs drilling of Kirschner wires; a pilot study in rabbits

In vivo biomechanical comparison of hammering vs drilling of Kirschner wires; a pilot study in... Heat generation due to drilling Kirschner wires (K-wires) into bone can lead to serious complications. Hammering K-wires could be an alternative insertion method because it generates less heat and results in better fixation and a shorter insertion time. There is, however, no in vivo information about insertion time and biomechanics of hammered K-wires. Insertion time was measured when drilling or hammering K-wires into femurs and tibias of 16 rabbits. Four K-wires inserted in one hind limb were used to measure extraction and torque forces directly after insertion ( T = 0) and four K-wires inserted in the contralateral hind limb were used for the same measurements 4 weeks after insertion ( T = 4). The insertion time for hammering was significantly shorter compared to drilling. Extraction and torque properties measured at T = 0 and T = 4 were equal for both techniques. Hammering, however, resulted in more cracks. Based on these results neither of these methods can be identified as a superior technique to insert K-wires in fragile bones. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Plastic Surgery Springer Journals

In vivo biomechanical comparison of hammering vs drilling of Kirschner wires; a pilot study in rabbits

Loading next page...
 
/lp/springer_journal/in-vivo-biomechanical-comparison-of-hammering-vs-drilling-of-kirschner-MBGn8ELCgN
Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Medicine & Public Health; Plastic Surgery
ISSN
0930-343X
eISSN
1435-0130
D.O.I.
10.1007/s00238-007-0143-9
Publisher site
See Article on Publisher Site

Abstract

Heat generation due to drilling Kirschner wires (K-wires) into bone can lead to serious complications. Hammering K-wires could be an alternative insertion method because it generates less heat and results in better fixation and a shorter insertion time. There is, however, no in vivo information about insertion time and biomechanics of hammered K-wires. Insertion time was measured when drilling or hammering K-wires into femurs and tibias of 16 rabbits. Four K-wires inserted in one hind limb were used to measure extraction and torque forces directly after insertion ( T = 0) and four K-wires inserted in the contralateral hind limb were used for the same measurements 4 weeks after insertion ( T = 4). The insertion time for hammering was significantly shorter compared to drilling. Extraction and torque properties measured at T = 0 and T = 4 were equal for both techniques. Hammering, however, resulted in more cracks. Based on these results neither of these methods can be identified as a superior technique to insert K-wires in fragile bones.

Journal

European Journal of Plastic SurgerySpringer Journals

Published: Jun 1, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off