In Vitro Targeted Gene Electrotransfer to Endothelial Cells with Plasmid DNA Containing Human Endothelin-1 Promoter

In Vitro Targeted Gene Electrotransfer to Endothelial Cells with Plasmid DNA Containing Human... Development of recombinant DNA technologies has allowed us to create new delivery systems that target specific cell types and that can be used in gene therapy. One of these targets is vascular endothelium because of its important role in tumor angiogenesis. For tumor endothelium-specific targeting, we prepared plasmid DNA encoding green fluorescent protein under the control of human endothelin-1 promoter (pENDO-EGFP), which is specific for endothelial cells. First we determined gene electrotransfer parameters for improved transfection of endothelial cells evaluating different osmolarity of electroporation buffer, voltages of applied electric pulses, and addition of fetal bovine serum immediately after electroporation to the cells for improved transfection and survival. Transfection efficacy of pENDO-EGFP in different endothelial and nonendothelial cell lines was determined next. Gene electrotransfer efficacy was evaluated using three different methods: fluorescence microscopy, fluorescence microplate reader, and flow cytometry. Our results showed that transfection efficacy was higher when cells were prepared in hypoosmolar compared to isoosmolar electroporation buffer. Furthermore, immediate addition of fetal bovine serum to the cells after pulsing also improved gene electrotransfer into target cells. We proved expression of EGFP under the control of human endothelin-1 promoter in endothelial cells, which was also significantly higher compared to nonendothelial cells. Taken together, we successfully constructed pENDO-EGFP, which was specifically expressed in endothelial cells using improved gene electrotransfer parameters. The Journal of Membrane Biology Springer Journals

In Vitro Targeted Gene Electrotransfer to Endothelial Cells with Plasmid DNA Containing Human Endothelin-1 Promoter

Loading next page...
Springer US
Copyright © 2013 by Springer Science+Business Media New York
Life Sciences; Biochemistry, general; Human Physiology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial