In vitro degradation and bioactivity of composite poly-l-lactic (PLLA)/bioactive glass (BG) scaffolds: comparison of 45S5 and 1393BG compositions

In vitro degradation and bioactivity of composite poly-l-lactic (PLLA)/bioactive glass (BG)... The objective of this study was to compare the effect of two bioglass (BG) compositions 45S5 and 1393 in poly-l-lactic composite scaffolds in terms of morphology, mechanical properties, biodegradation, water uptake and bioactivity. The scaffolds were produced via thermally induced phase separation starting from a ternary polymer solution (polymer/solvent/non-solvent). Furthermore, different BG to polymer ratios have been selected (1, 2.5, 5% wt/wt) to evaluate the effect of the amount of filler on the composite structure. Results show that the addition of 1393BG does not affect the scaffold morphology, whereas the 45S5BG at the highest amount tends to appreciably modify the scaffold architecture interacting with the phase separation process. Bioactivity tests confirmed the formation of a hydroxycarbonateapatite-layer in both types of BGs (detected via scanning electron microscopy, X-ray diffractometry and Fourier Transform Infrared Spectroscopy). Overall, the results showed that 1393BG composition affects the experimental preparation protocol to a minimal extent thus allowing a better control of the scaffold’s morphology compared to 45S5BG. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

In vitro degradation and bioactivity of composite poly-l-lactic (PLLA)/bioactive glass (BG) scaffolds: comparison of 45S5 and 1393BG compositions

Loading next page...
 
/lp/springer_journal/in-vitro-degradation-and-bioactivity-of-composite-poly-l-lactic-plla-YDIz1DM7Q0
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
ISSN
0022-2461
eISSN
1573-4803
D.O.I.
10.1007/s10853-017-1743-9
Publisher site
See Article on Publisher Site

Abstract

The objective of this study was to compare the effect of two bioglass (BG) compositions 45S5 and 1393 in poly-l-lactic composite scaffolds in terms of morphology, mechanical properties, biodegradation, water uptake and bioactivity. The scaffolds were produced via thermally induced phase separation starting from a ternary polymer solution (polymer/solvent/non-solvent). Furthermore, different BG to polymer ratios have been selected (1, 2.5, 5% wt/wt) to evaluate the effect of the amount of filler on the composite structure. Results show that the addition of 1393BG does not affect the scaffold morphology, whereas the 45S5BG at the highest amount tends to appreciably modify the scaffold architecture interacting with the phase separation process. Bioactivity tests confirmed the formation of a hydroxycarbonateapatite-layer in both types of BGs (detected via scanning electron microscopy, X-ray diffractometry and Fourier Transform Infrared Spectroscopy). Overall, the results showed that 1393BG composition affects the experimental preparation protocol to a minimal extent thus allowing a better control of the scaffold’s morphology compared to 45S5BG.

Journal

Journal of Materials ScienceSpringer Journals

Published: Oct 26, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off