In vitro degradation and bioactivity of composite poly-l-lactic (PLLA)/bioactive glass (BG) scaffolds: comparison of 45S5 and 1393BG compositions

In vitro degradation and bioactivity of composite poly-l-lactic (PLLA)/bioactive glass (BG)... The objective of this study was to compare the effect of two bioglass (BG) compositions 45S5 and 1393 in poly-l-lactic composite scaffolds in terms of morphology, mechanical properties, biodegradation, water uptake and bioactivity. The scaffolds were produced via thermally induced phase separation starting from a ternary polymer solution (polymer/solvent/non-solvent). Furthermore, different BG to polymer ratios have been selected (1, 2.5, 5% wt/wt) to evaluate the effect of the amount of filler on the composite structure. Results show that the addition of 1393BG does not affect the scaffold morphology, whereas the 45S5BG at the highest amount tends to appreciably modify the scaffold architecture interacting with the phase separation process. Bioactivity tests confirmed the formation of a hydroxycarbonateapatite-layer in both types of BGs (detected via scanning electron microscopy, X-ray diffractometry and Fourier Transform Infrared Spectroscopy). Overall, the results showed that 1393BG composition affects the experimental preparation protocol to a minimal extent thus allowing a better control of the scaffold’s morphology compared to 45S5BG. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

In vitro degradation and bioactivity of composite poly-l-lactic (PLLA)/bioactive glass (BG) scaffolds: comparison of 45S5 and 1393BG compositions

Loading next page...
 
/lp/springer_journal/in-vitro-degradation-and-bioactivity-of-composite-poly-l-lactic-plla-YDIz1DM7Q0
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
ISSN
0022-2461
eISSN
1573-4803
D.O.I.
10.1007/s10853-017-1743-9
Publisher site
See Article on Publisher Site

Abstract

The objective of this study was to compare the effect of two bioglass (BG) compositions 45S5 and 1393 in poly-l-lactic composite scaffolds in terms of morphology, mechanical properties, biodegradation, water uptake and bioactivity. The scaffolds were produced via thermally induced phase separation starting from a ternary polymer solution (polymer/solvent/non-solvent). Furthermore, different BG to polymer ratios have been selected (1, 2.5, 5% wt/wt) to evaluate the effect of the amount of filler on the composite structure. Results show that the addition of 1393BG does not affect the scaffold morphology, whereas the 45S5BG at the highest amount tends to appreciably modify the scaffold architecture interacting with the phase separation process. Bioactivity tests confirmed the formation of a hydroxycarbonateapatite-layer in both types of BGs (detected via scanning electron microscopy, X-ray diffractometry and Fourier Transform Infrared Spectroscopy). Overall, the results showed that 1393BG composition affects the experimental preparation protocol to a minimal extent thus allowing a better control of the scaffold’s morphology compared to 45S5BG.

Journal

Journal of Materials ScienceSpringer Journals

Published: Oct 26, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off