In-situ FTIR spectroscopic study of the mechanism of photocatalytic reduction of NO with methane over Pt/TiO2 photocatalysts

In-situ FTIR spectroscopic study of the mechanism of photocatalytic reduction of NO with methane... Photo-selective catalytic reduction of nitric oxide (NO) with methane (CH4) over TiO2 and Pt/TiO2 photocatalysts was studied at reaction temperatures of 25, 50, and 100 °C. The activity of Pt/TiO2 in NO reduction was better than that of TiO2. Conversion of NO by use of Pt/TiO2 and UV irradiation was up to 86.4 %. In-situ Fourier-transform infrared spectroscopy was successfully used to monitor the photoreaction process on TiO2 and Pt/TiO2 photocatalysts. During irradiation with UV light, bidentate nitrite disappeared and bidentate nitrate, monodentate nitrate, and isocyanate, an important intermediate, were generated. Adsorbed NH2 was found to be the final product of NO reduction after UV irradiation. We concluded that NO could be effectively reduced by CH4 under light irradiation at temperatures below 100 °C. A possible reaction mechanism is proposed on the basis of the intermediates and products generated by the photocatalyst under UV light irradiation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

In-situ FTIR spectroscopic study of the mechanism of photocatalytic reduction of NO with methane over Pt/TiO2 photocatalysts

Loading next page...
 
/lp/springer_journal/in-situ-ftir-spectroscopic-study-of-the-mechanism-of-photocatalytic-aC4NqqQyMI
Publisher
Springer Netherlands
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-013-1337-3
Publisher site
See Article on Publisher Site

Abstract

Photo-selective catalytic reduction of nitric oxide (NO) with methane (CH4) over TiO2 and Pt/TiO2 photocatalysts was studied at reaction temperatures of 25, 50, and 100 °C. The activity of Pt/TiO2 in NO reduction was better than that of TiO2. Conversion of NO by use of Pt/TiO2 and UV irradiation was up to 86.4 %. In-situ Fourier-transform infrared spectroscopy was successfully used to monitor the photoreaction process on TiO2 and Pt/TiO2 photocatalysts. During irradiation with UV light, bidentate nitrite disappeared and bidentate nitrate, monodentate nitrate, and isocyanate, an important intermediate, were generated. Adsorbed NH2 was found to be the final product of NO reduction after UV irradiation. We concluded that NO could be effectively reduced by CH4 under light irradiation at temperatures below 100 °C. A possible reaction mechanism is proposed on the basis of the intermediates and products generated by the photocatalyst under UV light irradiation.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Aug 1, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off