In Situ Enzymatic Synthesis of Polar Lipid Emulsifiers in the Preparation and Stabilisation of Aerated Food Emulsions

In Situ Enzymatic Synthesis of Polar Lipid Emulsifiers in the Preparation and Stabilisation of... We report on the direct incorporation of a lipase derived from Rhizomucor miehei, into aeratable food emulsion formulations, with the objective of enzymatically generating polar lipid fractions during processing, and which are able to demonstrate equivalent functionality to chemically synthesised monoglycerides. Findings showed that the lipolysis of palm oil-in-water emulsions produced a combination of predominantly oleic monoglyceride and palmitic fatty acid fractions. The extent of hydrolysis was able to be controlled through concentration of enzyme, reaction time, and reaction temperature. Hydrolysis was terminated via inactivation of the enzyme through high heat treatment of emulsions. Emulsion properties, notably stability under shear, were seen to be highly dependent on the extent of lipolysis. When applied to model whipping and ice cream formulations, lipolytic generation of polar lipids was shown to promote both partial coalescence and fat globule adsorption to bubble surfaces, generating structures equivalent to those produced by use of commercial emulsifiers. Product properties, such as physical stability and material properties showed variation according to the extent of lipolysis. Our results demonstrated that enzymatic lipolysis of emulsions under controlled conditions could be optimised to deliver requisite droplet functionality for the structuring and stabilisation of aerated food emulsions. Findings are of significance, not only when considering the potential for replacement of chemically derived emulsifiers in such formulations, but also from the perspective that this approach can readily be incorporated into existing manufacturing process operations. Food Biophysics Springer Journals

In Situ Enzymatic Synthesis of Polar Lipid Emulsifiers in the Preparation and Stabilisation of Aerated Food Emulsions

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media New York
Chemistry; Food Science; Biological and Medical Physics, Biophysics; Analytical Chemistry
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial