In-situ active site formation in CO oxidation on alumina

In-situ active site formation in CO oxidation on alumina For the development of automotive catalysts which may fit the condition of developing countries, catalytic activity of alumina for CO oxidation was studied. It was proposed that the carbon formed in-situ acted as an active site for CO oxidation. the carbon active site was also checked by methanol oxidation on alumina which showed temperature hysteresis during consecutive heating and cooling operations. Alkali-treated Alumina did not show any indication of the temperature hysteresis. The optimal temperature for maximum carbon depostion was confirmed by thermogravimetric analysis to be 450–500 C, which well explains the hysteresis. CeO2−Al2O3 showed remarkably higher activities for complete oxidation. It seems that alumina has reasonably satisfactory activity in total clean-up of exhaust gas. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

In-situ active site formation in CO oxidation on alumina

Loading next page...
 
/lp/springer_journal/in-situ-active-site-formation-in-co-oxidation-on-alumina-nRuXEnf4A7
Publisher
Springer Journals
Copyright
Copyright © 1998 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856798X00456
Publisher site
See Article on Publisher Site

Abstract

For the development of automotive catalysts which may fit the condition of developing countries, catalytic activity of alumina for CO oxidation was studied. It was proposed that the carbon formed in-situ acted as an active site for CO oxidation. the carbon active site was also checked by methanol oxidation on alumina which showed temperature hysteresis during consecutive heating and cooling operations. Alkali-treated Alumina did not show any indication of the temperature hysteresis. The optimal temperature for maximum carbon depostion was confirmed by thermogravimetric analysis to be 450–500 C, which well explains the hysteresis. CeO2−Al2O3 showed remarkably higher activities for complete oxidation. It seems that alumina has reasonably satisfactory activity in total clean-up of exhaust gas.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 14, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off