In-House Networks Using Multimode Polymer Optical Fiber for Broadband Wireless Services

In-House Networks Using Multimode Polymer Optical Fiber for Broadband Wireless Services A novel system concept is presented to transport microwave signals over an in-house multimode graded-index polymer optical fiber network, in order to feed the radio access points in high-capacity wireless LANs. By employing optical frequency multiplying, the network's intrinsically limited bandwidth is overcome. The feasibility of this concept to carry data at several hundreds of Mbit/s speed for various microwave signal formats at carrier frequencies in the tens of GHz range is shown. The concept enables cost-effective system implementation, and easy upgrading by offering data signal transparency. It can readily be integrated with other system technologies such as wired Gigabit Ethernet in a single multi-service in-house polymer optical fiber network. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

In-House Networks Using Multimode Polymer Optical Fiber for Broadband Wireless Services

Loading next page...
 
/lp/springer_journal/in-house-networks-using-multimode-polymer-optical-fiber-for-broadband-bNspHGgT9r
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1023/A:1022172511450
Publisher site
See Article on Publisher Site

Abstract

A novel system concept is presented to transport microwave signals over an in-house multimode graded-index polymer optical fiber network, in order to feed the radio access points in high-capacity wireless LANs. By employing optical frequency multiplying, the network's intrinsically limited bandwidth is overcome. The feasibility of this concept to carry data at several hundreds of Mbit/s speed for various microwave signal formats at carrier frequencies in the tens of GHz range is shown. The concept enables cost-effective system implementation, and easy upgrading by offering data signal transparency. It can readily be integrated with other system technologies such as wired Gigabit Ethernet in a single multi-service in-house polymer optical fiber network.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Oct 7, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off