In-depth proteome analysis of the rubber particle of Hevea brasiliensis (para rubber tree)

In-depth proteome analysis of the rubber particle of Hevea brasiliensis (para rubber tree) The rubber particle is a special organelle in which natural rubber is synthesised and stored in the laticifers of Hevea brasiliensis. To better understand the biological functions of rubber particles and to identify the candidate rubber biosynthesis-related proteins, a comprehensive proteome analysis was performed on H. brasiliensis rubber particles using shotgun tandem mass spectrometry profiling approaches—resulting in a thorough report on the rubber particle proteins. A total of 186 rubber particle proteins were identified, with a range in relative molecular mass of 3.9–194.2 kDa and in isoelectric point values of 4.0–11.2. The rubber particle proteins were analysed for gene ontology and could be categorised into eight major groups according to their functions: including rubber biosynthesis, stress- or defence-related responses, protein processing and folding, signal transduction and cellular transport. In addition to well-known rubber biosynthesis-related proteins such as rubber elongation factor (REF), small rubber particle protein (SRPP) and cis-prenyl transferase (CPT), many proteins were firstly identified to be on the rubber particles, including cyclophilin, phospholipase D, cytochrome P450, small GTP-binding protein, clathrin, eukaryotic translation initiation factor, annexin, ABC transporter, translationally controlled tumour protein, ubiquitin-conjugating enzymes, and several homologues of REF, SRPP and CPT. A procedure of multiple reaction monitoring was established for further protein validation. This comprehensive proteome data of rubber particles would facilitate investigation into molecular mechanisms of biogenesis, self-homeostasis and rubber biosynthesis of the rubber particle, and might serve as valuable biomarkers in molecular breeding studies of H. brasiliensis and other alternative rubber-producing species. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

In-depth proteome analysis of the rubber particle of Hevea brasiliensis (para rubber tree)

Loading next page...
 
/lp/springer_journal/in-depth-proteome-analysis-of-the-rubber-particle-of-hevea-7zWahxDBnU
Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-013-0047-y
Publisher site
See Article on Publisher Site

Abstract

The rubber particle is a special organelle in which natural rubber is synthesised and stored in the laticifers of Hevea brasiliensis. To better understand the biological functions of rubber particles and to identify the candidate rubber biosynthesis-related proteins, a comprehensive proteome analysis was performed on H. brasiliensis rubber particles using shotgun tandem mass spectrometry profiling approaches—resulting in a thorough report on the rubber particle proteins. A total of 186 rubber particle proteins were identified, with a range in relative molecular mass of 3.9–194.2 kDa and in isoelectric point values of 4.0–11.2. The rubber particle proteins were analysed for gene ontology and could be categorised into eight major groups according to their functions: including rubber biosynthesis, stress- or defence-related responses, protein processing and folding, signal transduction and cellular transport. In addition to well-known rubber biosynthesis-related proteins such as rubber elongation factor (REF), small rubber particle protein (SRPP) and cis-prenyl transferase (CPT), many proteins were firstly identified to be on the rubber particles, including cyclophilin, phospholipase D, cytochrome P450, small GTP-binding protein, clathrin, eukaryotic translation initiation factor, annexin, ABC transporter, translationally controlled tumour protein, ubiquitin-conjugating enzymes, and several homologues of REF, SRPP and CPT. A procedure of multiple reaction monitoring was established for further protein validation. This comprehensive proteome data of rubber particles would facilitate investigation into molecular mechanisms of biogenesis, self-homeostasis and rubber biosynthesis of the rubber particle, and might serve as valuable biomarkers in molecular breeding studies of H. brasiliensis and other alternative rubber-producing species.

Journal

Plant Molecular BiologySpringer Journals

Published: Apr 4, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off