In-database batch and query-time inference over probabilistic graphical models using UDA–GIST

In-database batch and query-time inference over probabilistic graphical models using UDA–GIST To meet customers’ pressing demands, enterprise database vendors have been pushing advanced analytical techniques into databases. Most major DBMSes use user-defined aggregates (UDAs), a data-driven operator, to implement analytical techniques in parallel. However, UDAs alone are not sufficient to implement statistical algorithms where most of the work is performed by iterative transitions over a large state that cannot be naively partitioned due to data dependency. Typically, this type of statistical algorithm requires pre-processing to set up the large state in the first place and demands post-processing after the statistical inference. This paper presents general iterative state transition (GIST), a new database operator for parallel iterative state transitions over large states. GIST receives a state constructed by a UDA and then performs rounds of transitions on the state until it converges. A final UDA performs post-processing and result extraction. We argue that the combination of UDA and GIST (UDA–GIST) unifies data-parallel and state-parallel processing in a single system, thus significantly extending the analytical capabilities of DBMSes. We exemplify the framework through two high-profile batch applications: cross-document coreference, image denoising and one query-time inference application: marginal inference queries over probabilistic knowledge graphs. The 3 applications use probabilistic graphical models, which encode complex relationships of different variables and are powerful for a wide range of problems. We show that the in-database framework allows us to tackle a 27 times larger problem than a scalable distributed solution for the first application and achieves 43 times speedup over the state-of-the-art for the second application. For the third application, we implement query-time inference using the UDA–GIST framework and apply over a probabilistic knowledge graph, achieving 10 times speedup over sequential inference. To the best of our knowledge, this is the first in-database query-time inference engine over large probabilistic knowledge base. We show that the UDA–GIST framework for data- and graph-parallel computations can support both batch and query-time inference efficiently in databases. The VLDB Journal Springer Journals

In-database batch and query-time inference over probabilistic graphical models using UDA–GIST

Loading next page...
Springer Berlin Heidelberg
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Computer Science; Database Management
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial