Impulse wave run-over: experimental benchmark study for numerical modelling

Impulse wave run-over: experimental benchmark study for numerical modelling This research intends to provide a detailed data basis for numerical modelling of impulse waves. Three tests are described involving a rectangular wave channel, in which a trapezoidal ‘breakwater’ was inserted to study wave run-over. In addition, a reference test is also described, in which the breakwater was removed. Two-dimensional impulse waves were generated by means of subaerial granular slides accelerated by a pneumatic landslide generator into the water body. Wave propagation and run-over over the artificial breakwater are documented by a set of high-quality photographs. Water surface profiles were recorded using capacitance wave gages upstream and downstream of the breakwater, and velocity vector fields were determined for the run-over zone by means of Particle Image Velocimetry. The measurements are compared with predictive formulae for wave features and wave non-linearity. The present data set involves both simple channel topography and wave features to allow for numerical simulations under basic laboratory conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Impulse wave run-over: experimental benchmark study for numerical modelling

Loading next page...
 
/lp/springer_journal/impulse-wave-run-over-experimental-benchmark-study-for-numerical-ee8EtQeNST
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-010-0836-x
Publisher site
See Article on Publisher Site

Abstract

This research intends to provide a detailed data basis for numerical modelling of impulse waves. Three tests are described involving a rectangular wave channel, in which a trapezoidal ‘breakwater’ was inserted to study wave run-over. In addition, a reference test is also described, in which the breakwater was removed. Two-dimensional impulse waves were generated by means of subaerial granular slides accelerated by a pneumatic landslide generator into the water body. Wave propagation and run-over over the artificial breakwater are documented by a set of high-quality photographs. Water surface profiles were recorded using capacitance wave gages upstream and downstream of the breakwater, and velocity vector fields were determined for the run-over zone by means of Particle Image Velocimetry. The measurements are compared with predictive formulae for wave features and wave non-linearity. The present data set involves both simple channel topography and wave features to allow for numerical simulations under basic laboratory conditions.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 6, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off