Improving throughput of long-hop TCP connections in IP over OPS networks

Improving throughput of long-hop TCP connections in IP over OPS networks Optical Packet Switching (OPS) can provide the ever-increasing bandwidth required for Internet traffic and new applications for future networks. However, optical packet loss is the major problem for an OPS network. Moreover, by increasing the number of hops between a pair of ingress–egress switches in an OPS network, optical Packet Loss Rate (PLR) between this pair is increased. Therefore, due to a higher PLR for long-hop TCP connections, the throughput of these connections may be much lower than the short-hop TCP connections. To overcome this problem, it is proposed in this paper to use the retransmission idea in the optical domain not only to increase TCP throughput but also to improve the throughput of multi-hop TCP connections, and also to have a loss-free OPS network. Under retransmission in the optical domain, a copy of the transmitted traffic is kept in the electronic buffers of ingress switches and retransmitted in the optical domain whenever required. Note that the TCP layer has its own retransmission at the client packet level as well. By retransmission of lost packets in the optical domain, TCP would be unaware of the lost client packets, and therefore, TCP would not reduce its sending rate. In this paper, TCP throughput is studied in a bufferless slotted OPS network and the effectiveness of the proposed mechanism is evaluated. Photonic Network Communications Springer Journals

Improving throughput of long-hop TCP connections in IP over OPS networks

Loading next page...
Springer US
Copyright © 2008 by Springer Science+Business Media, LLC
Computer Science; Characterization and Evaluation of Materials; Electrical Engineering; Computer Communication Networks
Publisher site
See Article on Publisher Site


  • On the benefits of multifiber optical packet switch
    Li, Y.; Xiao, G.; Ghafouri-Shiraz, H.
  • TCP performance in optical packet-switched networks
    Raffaelli, C.; Zaffoni, P.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial