Improving the sensitivity of immunoassays by reducing non-specific binding of poly(acrylic acid) coated upconverting nanoparticles by adding free poly(acrylic acid)

Improving the sensitivity of immunoassays by reducing non-specific binding of poly(acrylic acid)... Upconverting nanoparticles (UCNPs) are attractive reporters in immunoassays because of their outstanding detectability. However, non-specific binding of antibody-UCNP conjugates on protein coated solid support results in background, which limits the immunoassay sensitivity. Thus, the full potential of UCNPs as reporters cannot be fully exploited. The authors report here a method to improve the sensitivity of UCNP-based immunoassays by reducing the non-specific binding of antibody-UNCP conjugates on the protein coated solid support. In the assays studied here, poly(acrylic acid) (PAA) coated NaYF4:Yb3+,Er3+ type UCNPs were conjugated to two different antibodies against cardiac troponin I (cTnI) and thyroid stimulating hormone (TSH). The two-step heterogeneous sandwich immunoassays were performed in microtitration wells, and the green luminescence of antibody-UCNP conjugates was measured at 540 nm upon 980 nm excitation. Non-specific binding of antibody-UCNP conjugates was reduced by mixing free PAA with PAA coated UCNPs before adding the UCNPs to the wells. The free PAA in the buffer reduced the background in both cTnI and TSH immunoassays (compared to the control assay without free PAA). The limits of detection decreased from 2.1 ng·L−1 to 0.48 ng·L−1 in case of cTnI and from 0.070 mIU·L−1 to 0.020 mIU·L−1 in case of TSH if PAA is added to the buffer. Presumably, the effect of free PAA is due to blocking of the surface areas where PAA coated UCNP would bind proteins non-specifically. The method introduced here is likely to be applicable to other kinds of PAA-coated nanoparticles, and similar approaches conceivably work also with other nanoparticle coatings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microchimica Acta Springer Journals

Improving the sensitivity of immunoassays by reducing non-specific binding of poly(acrylic acid) coated upconverting nanoparticles by adding free poly(acrylic acid)

Loading next page...
 
/lp/springer_journal/improving-the-sensitivity-of-immunoassays-by-reducing-non-specific-0lUf0ctjP0
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Austria, part of Springer Nature
Subject
Chemistry; Nanochemistry; Nanotechnology; Characterization and Evaluation of Materials; Analytical Chemistry; Microengineering
ISSN
0026-3672
eISSN
1436-5073
D.O.I.
10.1007/s00604-018-2756-z
Publisher site
See Article on Publisher Site

Abstract

Upconverting nanoparticles (UCNPs) are attractive reporters in immunoassays because of their outstanding detectability. However, non-specific binding of antibody-UCNP conjugates on protein coated solid support results in background, which limits the immunoassay sensitivity. Thus, the full potential of UCNPs as reporters cannot be fully exploited. The authors report here a method to improve the sensitivity of UCNP-based immunoassays by reducing the non-specific binding of antibody-UNCP conjugates on the protein coated solid support. In the assays studied here, poly(acrylic acid) (PAA) coated NaYF4:Yb3+,Er3+ type UCNPs were conjugated to two different antibodies against cardiac troponin I (cTnI) and thyroid stimulating hormone (TSH). The two-step heterogeneous sandwich immunoassays were performed in microtitration wells, and the green luminescence of antibody-UCNP conjugates was measured at 540 nm upon 980 nm excitation. Non-specific binding of antibody-UCNP conjugates was reduced by mixing free PAA with PAA coated UCNPs before adding the UCNPs to the wells. The free PAA in the buffer reduced the background in both cTnI and TSH immunoassays (compared to the control assay without free PAA). The limits of detection decreased from 2.1 ng·L−1 to 0.48 ng·L−1 in case of cTnI and from 0.070 mIU·L−1 to 0.020 mIU·L−1 in case of TSH if PAA is added to the buffer. Presumably, the effect of free PAA is due to blocking of the surface areas where PAA coated UCNP would bind proteins non-specifically. The method introduced here is likely to be applicable to other kinds of PAA-coated nanoparticles, and similar approaches conceivably work also with other nanoparticle coatings.

Journal

Microchimica ActaSpringer Journals

Published: Mar 13, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off