Improving the security of protocols of quantum key agreement solely using Bell states and Bell measurement

Improving the security of protocols of quantum key agreement solely using Bell states and Bell... In a recent study, Shukla et al. (Quantum Inf Process 13:2391–2405, 2014) proposed two quantum key agreement protocols based on Bell state and Bell measurement, and they claimed that their two protocols were secure. However, in this study, we will show that the three-party protocol they proposed is not secure. Any participant in the protocol can directly obtain other two participants’ secret keys. More seriously, two dishonest participants in the protocol can conclude to determine the shared key alone. Furthermore, we will show that there is another minor flaw in their two protocols; that is, eavesdroppers can flip any bit of the final key without introducing any error. In the end, some possible improvements are proposed to avoid these flaws. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Improving the security of protocols of quantum key agreement solely using Bell states and Bell measurement

Loading next page...
 
/lp/springer_journal/improving-the-security-of-protocols-of-quantum-key-agreement-solely-Adz8iiKkrc
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-015-1110-1
Publisher site
See Article on Publisher Site

Abstract

In a recent study, Shukla et al. (Quantum Inf Process 13:2391–2405, 2014) proposed two quantum key agreement protocols based on Bell state and Bell measurement, and they claimed that their two protocols were secure. However, in this study, we will show that the three-party protocol they proposed is not secure. Any participant in the protocol can directly obtain other two participants’ secret keys. More seriously, two dishonest participants in the protocol can conclude to determine the shared key alone. Furthermore, we will show that there is another minor flaw in their two protocols; that is, eavesdroppers can flip any bit of the final key without introducing any error. In the end, some possible improvements are proposed to avoid these flaws.

Journal

Quantum Information ProcessingSpringer Journals

Published: Sep 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off