Improving the performance of organic light-emitting devices by incorporating non-doped TCNQ as electron buffer layer

Improving the performance of organic light-emitting devices by incorporating non-doped TCNQ as... The performance of organic light-emitting devices (OLEDs) is improved by inserting non-doped tetracyanoquinodimethane (TCNQ) electron buffer layer (EBL) between 4,7-diphnenyl-1,10-phe-nanthroline (Bphen) electron transport layer (ETL) and LiF/Al cathode. By optimizing the thickness of TCNQ layer, we find that the device with 6 nm TCNQ buffer layer can achieve the best performance. The maximum luminance, current efficiency, power efficiency and half-lifetime of the optimal device are increased by 27.32, 51.70, 127.55, and 73.89%, respectively, compared with those of the control device without TCNQ buffer layer. This improvement can be attributed to that the insertion of non-doped TCNQ buffer layer which is a simple approach can enhance the electron injection and operational stability of the devices. Moreover, we have carried out the tests of the atomic force microscope (AFM), scanning electron microscopy (SEM) and Kelvin probe to explore the effect of insering TCNQ. These tests results further verify that TCNQ layer not only smooth the surface of the films but also improve the electron injection and transport characteristics. As a result, the performances of the OLEDs can be effectively improved. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science: Materials in Electronics Springer Journals

Improving the performance of organic light-emitting devices by incorporating non-doped TCNQ as electron buffer layer

Loading next page...
 
/lp/springer_journal/improving-the-performance-of-organic-light-emitting-devices-by-Ptk59jvd1o
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials
ISSN
0957-4522
eISSN
1573-482X
D.O.I.
10.1007/s10854-017-7103-3
Publisher site
See Article on Publisher Site

Abstract

The performance of organic light-emitting devices (OLEDs) is improved by inserting non-doped tetracyanoquinodimethane (TCNQ) electron buffer layer (EBL) between 4,7-diphnenyl-1,10-phe-nanthroline (Bphen) electron transport layer (ETL) and LiF/Al cathode. By optimizing the thickness of TCNQ layer, we find that the device with 6 nm TCNQ buffer layer can achieve the best performance. The maximum luminance, current efficiency, power efficiency and half-lifetime of the optimal device are increased by 27.32, 51.70, 127.55, and 73.89%, respectively, compared with those of the control device without TCNQ buffer layer. This improvement can be attributed to that the insertion of non-doped TCNQ buffer layer which is a simple approach can enhance the electron injection and operational stability of the devices. Moreover, we have carried out the tests of the atomic force microscope (AFM), scanning electron microscopy (SEM) and Kelvin probe to explore the effect of insering TCNQ. These tests results further verify that TCNQ layer not only smooth the surface of the films but also improve the electron injection and transport characteristics. As a result, the performances of the OLEDs can be effectively improved.

Journal

Journal of Materials Science: Materials in ElectronicsSpringer Journals

Published: May 13, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off