Improving the machining accuracy of thin-walled parts by online measuring and allowance compensation

Improving the machining accuracy of thin-walled parts by online measuring and allowance compensation Thin-walled parts are important structural parts in the aerospace industry. Two common problems encountered in milling are workpiece deformation and tool wear, mainly due to the low rigidity of thin-walled structures and the poor machinability of difficult-to-cut materials. In this paper, we propose a novel online measuring and allowance compensation method that can be applied to thin-walled parts to improve machining accuracy. Automatic on-machine inspection is used to measure a workpiece after rough/semi-finishing without transferring and reclamping the workpiece. Then, a compensation value is calculated to adaptively adjust the depth of cutting during finishing. The method does not require complex cutting force modeling or nonlinear calculation of workpiece-tool deflection and avoids the uneconomical monitoring of the cutting force, power, and torque of the machine and cutting tools and can be extended to engineering applications easily. Its effectiveness and adaptability is demonstrated by an orthogonal experiment in which the structure, cutting depth, and material are considered. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Improving the machining accuracy of thin-walled parts by online measuring and allowance compensation

Loading next page...
 
/lp/springer_journal/improving-the-machining-accuracy-of-thin-walled-parts-by-online-wiTeKjWdFM
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0358-2
Publisher site
See Article on Publisher Site

Abstract

Thin-walled parts are important structural parts in the aerospace industry. Two common problems encountered in milling are workpiece deformation and tool wear, mainly due to the low rigidity of thin-walled structures and the poor machinability of difficult-to-cut materials. In this paper, we propose a novel online measuring and allowance compensation method that can be applied to thin-walled parts to improve machining accuracy. Automatic on-machine inspection is used to measure a workpiece after rough/semi-finishing without transferring and reclamping the workpiece. Then, a compensation value is calculated to adaptively adjust the depth of cutting during finishing. The method does not require complex cutting force modeling or nonlinear calculation of workpiece-tool deflection and avoids the uneconomical monitoring of the cutting force, power, and torque of the machine and cutting tools and can be extended to engineering applications easily. Its effectiveness and adaptability is demonstrated by an orthogonal experiment in which the structure, cutting depth, and material are considered.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Apr 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off