Improving the energy efficiency of software-defined backbone networks

Improving the energy efficiency of software-defined backbone networks The continuous growth of traffic and the energy consumption of network equipments can limit the deployment of large-scale distributed infrastructure. This work aims to improve the energy efficiency of backbone networks by dynamically adjusting the number of active links according to network load. We propose an intra-domain software-defined network approach to select and turn off a subset of links. The SPRING protocol (a.k.a. segment routing) is used to make our algorithms converge faster. The algorithms—implemented and evaluated using the OMNET++ discrete event simulator—can achieve energy savings of around 44 % when considering real backbone networks. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Improving the energy efficiency of software-defined backbone networks

Loading next page...
 
/lp/springer_journal/improving-the-energy-efficiency-of-software-defined-backbone-networks-lTOIxdC8c0
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-015-0552-9
Publisher site
See Article on Publisher Site

Abstract

The continuous growth of traffic and the energy consumption of network equipments can limit the deployment of large-scale distributed infrastructure. This work aims to improve the energy efficiency of backbone networks by dynamically adjusting the number of active links according to network load. We propose an intra-domain software-defined network approach to select and turn off a subset of links. The SPRING protocol (a.k.a. segment routing) is used to make our algorithms converge faster. The algorithms—implemented and evaluated using the OMNET++ discrete event simulator—can achieve energy savings of around 44 % when considering real backbone networks.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Sep 2, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off