Improving Mandarin Tone Recognition Based on DNN by Combining Acoustic and Articulatory Features Using Extended Recognition Networks

Improving Mandarin Tone Recognition Based on DNN by Combining Acoustic and Articulatory Features... In this paper, we investigate the effectiveness of articulatory information for Mandarin tone modeling and recognition in a deep neural network – hidden Markov model (DNN-HMM) framework. In conventional approaches, prosodic evidence (e.g., F0, duration and energy) is used to build tone classifiers, we here propose performance enhancement techniques in three areas: (i) adding articulatory features (AFs) and acoustic features, such as MFCCs (Mel frequency cepstrum coefficients), for tone modeling; (ii) adopting phone-dependent tone modeling; and (iii) using tone-based extended recognition network (ERN) to reduce the tone search space. The first approach is feature-related, it explicitly employs the AFs as a form of tonal features and is implemented through a multi-stage procedure. The second approach is model-related and directly extends to phone-dependent tone modeling so that each modeling unit (e.g., tonal phone) not only contains tone information, but also integrates the phone/articulatory information. Finally, the third technique is search-related with a phone-dependent tone-based expanding searching network. A series of comprehensive experiments is conducted using different input feature sets. It is demonstrated that (i) tone recognition accuracy is boosted by incorporating articulatory information, and (ii) ERN, attains the lowest tone error rate of 7.17%, with a 56% relative error reduction from the prosody-only baseline system error of 16.36%. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Signal Processing Systems Springer Journals

Improving Mandarin Tone Recognition Based on DNN by Combining Acoustic and Articulatory Features Using Extended Recognition Networks

Loading next page...
 
/lp/springer_journal/improving-mandarin-tone-recognition-based-on-dnn-by-combining-acoustic-zeqM7NJ3aN
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Engineering; Signal,Image and Speech Processing; Circuits and Systems; Electrical Engineering; Image Processing and Computer Vision; Pattern Recognition; Computer Imaging, Vision, Pattern Recognition and Graphics
ISSN
1939-8018
eISSN
1939-8115
D.O.I.
10.1007/s11265-018-1334-2
Publisher site
See Article on Publisher Site

Abstract

In this paper, we investigate the effectiveness of articulatory information for Mandarin tone modeling and recognition in a deep neural network – hidden Markov model (DNN-HMM) framework. In conventional approaches, prosodic evidence (e.g., F0, duration and energy) is used to build tone classifiers, we here propose performance enhancement techniques in three areas: (i) adding articulatory features (AFs) and acoustic features, such as MFCCs (Mel frequency cepstrum coefficients), for tone modeling; (ii) adopting phone-dependent tone modeling; and (iii) using tone-based extended recognition network (ERN) to reduce the tone search space. The first approach is feature-related, it explicitly employs the AFs as a form of tonal features and is implemented through a multi-stage procedure. The second approach is model-related and directly extends to phone-dependent tone modeling so that each modeling unit (e.g., tonal phone) not only contains tone information, but also integrates the phone/articulatory information. Finally, the third technique is search-related with a phone-dependent tone-based expanding searching network. A series of comprehensive experiments is conducted using different input feature sets. It is demonstrated that (i) tone recognition accuracy is boosted by incorporating articulatory information, and (ii) ERN, attains the lowest tone error rate of 7.17%, with a 56% relative error reduction from the prosody-only baseline system error of 16.36%.

Journal

Journal of Signal Processing SystemsSpringer Journals

Published: Feb 8, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off