Improving hydroturbine pressures to enhance salmon passage survival and recovery

Improving hydroturbine pressures to enhance salmon passage survival and recovery Barotrauma caused by rapid decompression during hydroturbine (turbine) passage may occur as fish move through the low pressure region below the turbine runner. This scenario is of particular concern in North American rivers with populations of ESA-listed salmon. The US Army Corps of Engineers (USACE) and the Pacific Northwest National Laboratory released Sensor Fish into lower Snake and Columbia River turbines to determine the magnitude and rate of pressure change fish might experience. Recorded pressures were applied to simulated turbine passage (STP) in laboratory studies to determine the effect of rapid decompression on juvenile Chinook salmon. These STP studies have increased our understanding of how pressure effects fish passing through turbines and suggest that the ratio of pressure change [acclimation pressure (the depth upstream of the dam where fish are neutrally buoyant) divided by nadir pressure (lowest pressure)] is highly predictive in determining the effect on smolt survival. However, uncertainty remains in smolt acclimation depth prior to entering turbine intakes at hydroelectric facilities. The USACE continues to make progress on salmon survival and recovery efforts through continued research and by applying pressure study results to turbine design. Designing new turbines with higher nadir pressure criteria is likely to provide safer fish passage for all salmonid species experiencing turbine passage. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Fish Biology and Fisheries Springer Journals

Improving hydroturbine pressures to enhance salmon passage survival and recovery

Loading next page...
 
/lp/springer_journal/improving-hydroturbine-pressures-to-enhance-salmon-passage-survival-WdIfN2asOv
Publisher
Springer International Publishing
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht (outside the USA)
Subject
Life Sciences; Freshwater & Marine Ecology; Zoology
ISSN
0960-3166
eISSN
1573-5184
D.O.I.
10.1007/s11160-013-9340-8
Publisher site
See Article on Publisher Site

Abstract

Barotrauma caused by rapid decompression during hydroturbine (turbine) passage may occur as fish move through the low pressure region below the turbine runner. This scenario is of particular concern in North American rivers with populations of ESA-listed salmon. The US Army Corps of Engineers (USACE) and the Pacific Northwest National Laboratory released Sensor Fish into lower Snake and Columbia River turbines to determine the magnitude and rate of pressure change fish might experience. Recorded pressures were applied to simulated turbine passage (STP) in laboratory studies to determine the effect of rapid decompression on juvenile Chinook salmon. These STP studies have increased our understanding of how pressure effects fish passing through turbines and suggest that the ratio of pressure change [acclimation pressure (the depth upstream of the dam where fish are neutrally buoyant) divided by nadir pressure (lowest pressure)] is highly predictive in determining the effect on smolt survival. However, uncertainty remains in smolt acclimation depth prior to entering turbine intakes at hydroelectric facilities. The USACE continues to make progress on salmon survival and recovery efforts through continued research and by applying pressure study results to turbine design. Designing new turbines with higher nadir pressure criteria is likely to provide safer fish passage for all salmonid species experiencing turbine passage.

Journal

Reviews in Fish Biology and FisheriesSpringer Journals

Published: Dec 12, 2013

References

  • Six-degree-of-freedom Sensor Fish design and instrumentation
    Deng, Z; Carlson, TJ; Duncan, JP; Richmond, MC

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off