Improving Glycyrrhiza uralensis salt tolerance with N+ ion irradiation

Improving Glycyrrhiza uralensis salt tolerance with N+ ion irradiation Low energy (25 keV) N+ ions were implanted into liquorice (Glycyrrhiza uralensis) seeds at a fluency of either zero (control) or 900 × (2.6 × 1013) ions/cm2. After irradiation, all the seeds were planted in the plastic pots for a growth period of one month. Thereafter, the seedlings in the pot were subjected to saline stress at 600 mM for about 3 days. The morphological and physiological characteristics such as total chlorophyll content, proline level, activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ATPase, and triphenyl tetrazolium chloride (TTC) reduction in seedling roots were investigated. Our results indicated that ion irradiation significantly increased the shoot height, leaflet number, taproot lenght, lateral root number, and shoot and root weights of liquorice seedlings with or without saline stress. Furthermore, the total chlorophyll content, proline level, SOD, POD, CAT, ATPase activities, and root TTC reduction vigor of seedlings were all found to be significantly increased under saline stress by ion irradiation compared with their corresponding controls. These results indicated that ion irradiation can strengthen the resistance of liquorice seedlings to saline stress and may have a potential application for the improvement of plants in sand areas. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Improving Glycyrrhiza uralensis salt tolerance with N+ ion irradiation

Loading next page...
 
/lp/springer_journal/improving-glycyrrhiza-uralensis-salt-tolerance-with-n-ion-irradiation-H9wA6c1Yst
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2008 by MAIK Nauka
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443708030096
Publisher site
See Article on Publisher Site

Abstract

Low energy (25 keV) N+ ions were implanted into liquorice (Glycyrrhiza uralensis) seeds at a fluency of either zero (control) or 900 × (2.6 × 1013) ions/cm2. After irradiation, all the seeds were planted in the plastic pots for a growth period of one month. Thereafter, the seedlings in the pot were subjected to saline stress at 600 mM for about 3 days. The morphological and physiological characteristics such as total chlorophyll content, proline level, activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ATPase, and triphenyl tetrazolium chloride (TTC) reduction in seedling roots were investigated. Our results indicated that ion irradiation significantly increased the shoot height, leaflet number, taproot lenght, lateral root number, and shoot and root weights of liquorice seedlings with or without saline stress. Furthermore, the total chlorophyll content, proline level, SOD, POD, CAT, ATPase activities, and root TTC reduction vigor of seedlings were all found to be significantly increased under saline stress by ion irradiation compared with their corresponding controls. These results indicated that ion irradiation can strengthen the resistance of liquorice seedlings to saline stress and may have a potential application for the improvement of plants in sand areas.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: May 15, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off