Improving Gate-Level Simulation of Quantum Circuits

Improving Gate-Level Simulation of Quantum Circuits Simulating quantum computation on a classical computer is a difficult problem. The matrices representing quantum gates, and the vectors modeling qubit states grow exponentially with an increase in the number of qubits. However, by using a novel data structure called the Quantum Information Decision Diagram (QuIDD) that exploits the structure of quantum operators, a useful subset of operator matrices and state vectors can be represented in a form that grows polynomially with the number of qubits. This subset contains, but is not limited to, any equal superposition of n qubits, any computational basis state, n-qubit Pauli matrices, and n-qubit Hadamard matrices. It does not, however, contain the discrete Fourier transform (employed in Shor's algorithm) and some oracles used in Grover's algorithm. We first introduce and motivate decision diagrams and QuIDDs. We then analyze the runtime and memory complexity of QuIDD operations. Finally, we empirically validate QuIDD-based simulation by means of a general-purpose quantum computing simulator QuIDDPro implemented in C++. We simulate various instances of Grover's algorithm with QuIDDPro, and the results demonstrate that QuIDDs asymptotically outperform all other known simulation techniques. Our simulations also show that well-known worst-case instances of classical searching can be circumvented in many specific cases by data compression techniques. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Improving Gate-Level Simulation of Quantum Circuits

Loading next page...
 
/lp/springer_journal/improving-gate-level-simulation-of-quantum-circuits-EGK4nGOfeF
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2003 by Plenum Publishing Corporation
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1023/B:QINP.0000022725.70000.4a
Publisher site
See Article on Publisher Site

Abstract

Simulating quantum computation on a classical computer is a difficult problem. The matrices representing quantum gates, and the vectors modeling qubit states grow exponentially with an increase in the number of qubits. However, by using a novel data structure called the Quantum Information Decision Diagram (QuIDD) that exploits the structure of quantum operators, a useful subset of operator matrices and state vectors can be represented in a form that grows polynomially with the number of qubits. This subset contains, but is not limited to, any equal superposition of n qubits, any computational basis state, n-qubit Pauli matrices, and n-qubit Hadamard matrices. It does not, however, contain the discrete Fourier transform (employed in Shor's algorithm) and some oracles used in Grover's algorithm. We first introduce and motivate decision diagrams and QuIDDs. We then analyze the runtime and memory complexity of QuIDD operations. Finally, we empirically validate QuIDD-based simulation by means of a general-purpose quantum computing simulator QuIDDPro implemented in C++. We simulate various instances of Grover's algorithm with QuIDDPro, and the results demonstrate that QuIDDs asymptotically outperform all other known simulation techniques. Our simulations also show that well-known worst-case instances of classical searching can be circumvented in many specific cases by data compression techniques.

Journal

Quantum Information ProcessingSpringer Journals

Published: Oct 7, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off