Improving Bandwidth Utilization of Intermittent Links in Highly Dynamic Ad Hoc Networks

Improving Bandwidth Utilization of Intermittent Links in Highly Dynamic Ad Hoc Networks Non-uniform node densities occur and intermittent links exist in highly dynamic ad hoc networks. To fit these networks, researchers usually combine delay tolerant network (DTN) routing protocols and mobile ad hoc network (MANET) routing protocols. The DTN protocol separates end-to-end links into multiple DTN links, which consist of multi-hop MANET links. Determining how to arrange DTN links and MANET links from source to end and dealing with intermittent links are performance issues, because node density ranges from sparse to dense and MANET protocols are much lighter than DTN protocols. This paper presents HMDTN, an application-network cross-layer framework, to solve the previously mentioned issues. The application layer in HMDTN supports disrupt tolerance with a large data buffer while adjusting the routing table on the basis of the connection state of links (link is disrupted or recovered), which are collected by the network layer. As a result, HMDTN increases the bandwidth utilization of intermittent links without compromising the efficiency of the MANET protocol in a reliable network. The HMDTN prototype was implemented based on Bytewalla (a Java version of DTN2) and Netfilter-based AODV. Experiments on Android devices show that unlike AODV and Epidemic, HMDTN increases the bandwidth utilization of intermittent links with a negligible increase of network overhead. In particular, HMDTN maintains the network throughput as high as regular network conditions even if the network undergoes relatively long-term (dozens of seconds or few minutes) data link disruptions. Wireless Personal Communications Springer Journals

Improving Bandwidth Utilization of Intermittent Links in Highly Dynamic Ad Hoc Networks

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media, LLC
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial