Improvement strategy for edge waviness in roll bending process of corrugated sheet metals

Improvement strategy for edge waviness in roll bending process of corrugated sheet metals This paper focuses on the corrugated thin-walled sheet metal in the roll bending process. The main defect that appears in corrugated panels subjected to high amounts of bending deformation is a wavy edge. Edge defects are caused by excessive longitudinal stress and strain near the edge of the plate, and local edge buckling may occur when some critical value of the bending radius is exceeded. This paper proposes two different approaches to avoid a wavy edge for a formed panel: excessive stress on the edge region is restrained by controlling the length of the cross-sectional end of the corrugated panel while considering the stress distribution, and the bending radius in each forming step is determined by considering the strain limit at which the initial edge waviness occurs to avoid excessive compression at particular steps. The experimental and numerical results indicated that the two proposed design strategies can minimize wavy edges in the formed shape. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Material Forming Springer Journals

Improvement strategy for edge waviness in roll bending process of corrugated sheet metals

Loading next page...
 
/lp/springer_journal/improvement-strategy-for-edge-waviness-in-roll-bending-process-of-w05GTWUCGj
Publisher
Springer Paris
Copyright
Copyright © 2016 by Springer-Verlag France
Subject
Engineering; Operating Procedures, Materials Treatment; Materials Science, general; Manufacturing, Machines, Tools; Mechanical Engineering; Computational Intelligence; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
1960-6206
eISSN
1960-6214
D.O.I.
10.1007/s12289-016-1303-x
Publisher site
See Article on Publisher Site

Abstract

This paper focuses on the corrugated thin-walled sheet metal in the roll bending process. The main defect that appears in corrugated panels subjected to high amounts of bending deformation is a wavy edge. Edge defects are caused by excessive longitudinal stress and strain near the edge of the plate, and local edge buckling may occur when some critical value of the bending radius is exceeded. This paper proposes two different approaches to avoid a wavy edge for a formed panel: excessive stress on the edge region is restrained by controlling the length of the cross-sectional end of the corrugated panel while considering the stress distribution, and the bending radius in each forming step is determined by considering the strain limit at which the initial edge waviness occurs to avoid excessive compression at particular steps. The experimental and numerical results indicated that the two proposed design strategies can minimize wavy edges in the formed shape.

Journal

International Journal of Material FormingSpringer Journals

Published: Jun 16, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off