Improvement of symbiotic nitrogen fixation in plants: molecular-genetic approaches and evolutionary models

Improvement of symbiotic nitrogen fixation in plants: molecular-genetic approaches and... Efficiency of symbiotic nitrogen fixation in legumes depends on bringing together the processes of N2 fixation, assimilation of its products, supply of nitrogenase with energy, and development of nodule tissue and cellular structures. Coordination of these processes could arise from the evolutionary old functions of the nodules associated with deposition of the products of photosynthesis governed by systemic signals traveling between the above-ground organs and the roots. Further increase in symbiotic efficiency was associated with a pronounced ability to fix N2 by intracellular bacteroids that lost capability to propagate (as observed in galegoid legumes from the tribes Viciae, Trifolieae, and Galegae producing indeterminate nodules). However, efficiency of these symbioses is restricted by a slow removal from the nodules of the products of N2 fixation, which are assimilated along the same amide pathway as nitrogen compounds arriving from the soil. In legumes from the tribe Phaseoleae, such a restriction was overcome owing to a particular way of nitrogen assimilation via its incorporation into ureides (in determinate nodules). Development of symbioses where specialization of bacteroids in symbiotic fixation of atmospheric nitrogen is combined with its ureide assimilation will make it possible to produce new forms of plants highly efficient in symbiotic nitrogen fixation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Improvement of symbiotic nitrogen fixation in plants: molecular-genetic approaches and evolutionary models

Loading next page...
 
/lp/springer_journal/improvement-of-symbiotic-nitrogen-fixation-in-plants-molecular-genetic-w0zljHPkVU
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2013 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443713010056
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial