Improvement of FPPR method to solve ECDLP

Improvement of FPPR method to solve ECDLP Solving the elliptic curve discrete logarithm problem (ECDLP) by using Gröbner basis has recently appeared as a new threat to the security of elliptic curve cryptography and pairing-based cryptosystems. At Eurocrypt 2012, Faugère, Perret, Petit and Renault proposed a new method (FPPR method) using a multivariable polynomial system to solve ECDLP over finite fields of characteristic 2. At Asiacrypt 2012, Petit and Quisquater showed that this method may beat generic algorithms for extension degrees larger than about 2000. In this paper, we propose a variant of FPPR method that practically reduces the computation time and memory required. Our variant is based on the idea of symmetrization. This idea already provided practical improvements in several previous works for composite-degree extension fields, but its application to prime-degree extension fields has been more challenging. To exploit symmetries in an efficient way in that case, we specialize the definition of factor basis used in FPPR method to replace the original polynomial system by a new and simpler one. We provide theoretical and experimental evidence that our method is faster and requires less memory than FPPR method when the extension degree is large enough. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Pacific Journal of Mathematics for Industry Springer Journals

Loading next page...
 
/lp/springer_journal/improvement-of-fppr-method-to-solve-ecdlp-WIwKwlGtWp
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Huang et al.; licensee Springer.
Subject
Mathematics; Applications of Mathematics; Quantitative Finance; Mathematical Applications in Computer Science; Mathematical Applications in the Physical Sciences; Mathematical Modeling and Industrial Mathematics; Math Applications in Computer Science
eISSN
2198-4115
D.O.I.
10.1186/s40736-015-0012-6
Publisher site
See Article on Publisher Site

Abstract

Solving the elliptic curve discrete logarithm problem (ECDLP) by using Gröbner basis has recently appeared as a new threat to the security of elliptic curve cryptography and pairing-based cryptosystems. At Eurocrypt 2012, Faugère, Perret, Petit and Renault proposed a new method (FPPR method) using a multivariable polynomial system to solve ECDLP over finite fields of characteristic 2. At Asiacrypt 2012, Petit and Quisquater showed that this method may beat generic algorithms for extension degrees larger than about 2000. In this paper, we propose a variant of FPPR method that practically reduces the computation time and memory required. Our variant is based on the idea of symmetrization. This idea already provided practical improvements in several previous works for composite-degree extension fields, but its application to prime-degree extension fields has been more challenging. To exploit symmetries in an efficient way in that case, we specialize the definition of factor basis used in FPPR method to replace the original polynomial system by a new and simpler one. We provide theoretical and experimental evidence that our method is faster and requires less memory than FPPR method when the extension degree is large enough.

Journal

Pacific Journal of Mathematics for IndustrySpringer Journals

Published: Mar 25, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off