Improved Specificity of Gene Electrotransfer to Skin Using pDNA Under the Control of Collagen Tissue-Specific Promoter

Improved Specificity of Gene Electrotransfer to Skin Using pDNA Under the Control of Collagen... In order to ensure safe, efficient and controlled gene delivery to skin, the improvement of delivery methods together with proper design of DNA is required. Non-viral delivery methods, such as gene electrotransfer, and the design of tissue-specific promoters are promising tools to ensure the safety of gene delivery to the skin. In the scope of our study, we evaluated a novel skin-specific plasmid DNA with collagen (COL) promoter, delivered to skin cells and skin tissue by gene electrotransfer. In vitro, we determined the specificity of the COL promoter in fibroblast cells. The specific expression under the control of COL promoter was obtained for the reporter gene DsRed as well as for therapeutic gene encoding cytokine IL-12. In vivo, the plasmid with COL promoter encoding the reporter gene DsRed was efficiently transfected to mouse skin. It resulted in the notable and controlled manner, however, in lower and shorter expression, compared to that obtained with ubiquitous promoter. The concentration of the IL-12 in the skin after the in vivo transfection of plasmid with COL promoter was in the same range as after the treatment in control conditions (injection of distilled water followed by the application of electric pulses). Furthermore, this gene delivery was local, restricted to the skin, without any evident systemic shedding of IL-12. Such specific targeting of skin cells, observed with tissue-specific COL promoter, would improve the effectiveness and safety of cutaneous gene therapies and DNA vaccines. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Improved Specificity of Gene Electrotransfer to Skin Using pDNA Under the Control of Collagen Tissue-Specific Promoter

Loading next page...
 
/lp/springer_journal/improved-specificity-of-gene-electrotransfer-to-skin-using-pdna-under-Dz4AiExYeE
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-015-9799-4
Publisher site
See Article on Publisher Site

Abstract

In order to ensure safe, efficient and controlled gene delivery to skin, the improvement of delivery methods together with proper design of DNA is required. Non-viral delivery methods, such as gene electrotransfer, and the design of tissue-specific promoters are promising tools to ensure the safety of gene delivery to the skin. In the scope of our study, we evaluated a novel skin-specific plasmid DNA with collagen (COL) promoter, delivered to skin cells and skin tissue by gene electrotransfer. In vitro, we determined the specificity of the COL promoter in fibroblast cells. The specific expression under the control of COL promoter was obtained for the reporter gene DsRed as well as for therapeutic gene encoding cytokine IL-12. In vivo, the plasmid with COL promoter encoding the reporter gene DsRed was efficiently transfected to mouse skin. It resulted in the notable and controlled manner, however, in lower and shorter expression, compared to that obtained with ubiquitous promoter. The concentration of the IL-12 in the skin after the in vivo transfection of plasmid with COL promoter was in the same range as after the treatment in control conditions (injection of distilled water followed by the application of electric pulses). Furthermore, this gene delivery was local, restricted to the skin, without any evident systemic shedding of IL-12. Such specific targeting of skin cells, observed with tissue-specific COL promoter, would improve the effectiveness and safety of cutaneous gene therapies and DNA vaccines.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Apr 4, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off