Improved self-snake based anisotropic diffusion model for edge preserving image denoising using structure tensor

Improved self-snake based anisotropic diffusion model for edge preserving image denoising using... The performance of classifier algorithms used for predictive analytics highly dependent on quality of training data. This requirement demands the need for noise free data or images. The existing partial differential equation based diffusion models can remove noise present in an image but lacking in preserving thin lines, fine details and sharp corners. The classifier algorithms can able to make correct judgement to which class the image belongs to only if all edges are preserved properly during denoising process. To satisfy this requirement the authors proposed a new improved partial differential equation based diffusion algorithm for edge preserving image denoising. The proposed new anisotropic diffusion algorithm is an extension of self-snake diffusion filter which estimates edge and gradient directions as eigenvectors of a structure tensor matrix. The unique feature of this proposed anisotropic diffusion algorithm is diffusion rate at various parts of an image matches with the speed of level set flow. In the proposed algorithm an efficient edge indicator function dependent on the trace of the structure tensor matrix is used. The proposed model performs best in preserving thin lines, sharp corners and fine details since diffusion happens only along edges and diffusion is totally stopped across edges in this model. The additional edge-stopping term which is a vector dot product of derivative of an edge stopping function and derivative of an image computed along gradient and edge orthogonal directions is used in this model as shock filter which enables increased sharpness at all discontinuities. The performance of proposed diffusion algorithm is compared with other classical diffusion filters like conventional perona-malik diffusion, conventional self-snake diffusion methods. Multimedia Tools and Applications Springer Journals

Improved self-snake based anisotropic diffusion model for edge preserving image denoising using structure tensor

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media New York
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial