Improved remote sensing detection of wheat powdery mildew using dual-green vegetation indices

Improved remote sensing detection of wheat powdery mildew using dual-green vegetation indices In this study, we investigated the possibility of using ground-based remote sensing technology to estimate powdery mildew disease severity in winter wheat. Using artificially inoculated fields, potted plants, and disease nursery tests, we measured the powdery mildew canopy spectra of varieties of wheat at different levels of incidence and growth stages to investigate the disease severity. The results showed that the powdery mildew sensitive bands were between 580 and 710 nm. The best two-band vegetation index that correlated with wheat powdery mildew between 400 and 1000 nm wavelength were the normalized spectrum 570–590 and 536–566 nm bands for the ratio index, and 568–592 and 528–570 nm for the normalized difference index. The coefficients of determination (R 2) for both were almost the same. The optimum dual-green vegetation index was constructed based on a calculation of the ratio and normalized difference between the normalized spectrum within the two green bands. The coefficients of determination (R 2) of DGSR (584, 550) (dual-green simple ratio) and DGND (584, 550) (dual-green normalized difference) were both 0.845. The inverse models of disease severity performed well in the test process at the canopy scale, and indicated that, compared with the traditional vegetation indices of Lwidth, mND705, ND (SDr, SDb), SIPI, and GNDVI, the novel dual-green indices greatly improved the remote sensing detection of wheat powdery mildew disease. Following these results, combined disease severity and canopy spectra were shown to be of enormous value when applied to the accurate monitoring, prevention, and control of crop diseases. Precision Agriculture Springer Journals

Improved remote sensing detection of wheat powdery mildew using dual-green vegetation indices

Loading next page...
Springer US
Copyright © 2016 by Springer Science+Business Media New York
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial