Improved linear crosstalk tolerance in an un-amplified ring PON

Improved linear crosstalk tolerance in an un-amplified ring PON There is increased interest in ring-based passive optical network (PON) architectures due to their local area network (LAN) capability among end users and inherent protection and restoration schemes. The ring architecture includes optical filters and switches with non-ideal channel isolation, leading to the generation of linear crosstalk, which can significantly degrade the system performance if it is not sufficiently suppressed. We use simulation to analyze the effects of linear crosstalk in an un-amplified TDM optical ring and show how we can improve the tolerance of the crosstalk in our architecture that employs optimized tap split ratios as a means of increasing the number of ONUs served. Our approach is based on simulation of the entire network using a combination of wavelength-domain and time-domain techniques. Typically, PON networks use two or three wavelengths that are separated by more than 50 nm to maintain the cost of components low and as such, it is logical that any crosstalk will be negligible. However, the subpar performance of such components motivated our study into the impact of crosstalk. We show that the tap ratio optimization which increases the number ONUs that can be served in the ring can also exacerbate the effects of linear interchannel crosstalk at the ONU’s downstream signal receivers. We also show that surplus power at the last ONU can be utilized to counter this degraded crosstalk performance by careful tap ratio selection, thereby improving the overall tolerance to linear crosstalk in the system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Improved linear crosstalk tolerance in an un-amplified ring PON

Loading next page...
 
/lp/springer_journal/improved-linear-crosstalk-tolerance-in-an-un-amplified-ring-pon-NoPuME5t07
Publisher
Springer US
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-011-0313-3
Publisher site
See Article on Publisher Site

Abstract

There is increased interest in ring-based passive optical network (PON) architectures due to their local area network (LAN) capability among end users and inherent protection and restoration schemes. The ring architecture includes optical filters and switches with non-ideal channel isolation, leading to the generation of linear crosstalk, which can significantly degrade the system performance if it is not sufficiently suppressed. We use simulation to analyze the effects of linear crosstalk in an un-amplified TDM optical ring and show how we can improve the tolerance of the crosstalk in our architecture that employs optimized tap split ratios as a means of increasing the number of ONUs served. Our approach is based on simulation of the entire network using a combination of wavelength-domain and time-domain techniques. Typically, PON networks use two or three wavelengths that are separated by more than 50 nm to maintain the cost of components low and as such, it is logical that any crosstalk will be negligible. However, the subpar performance of such components motivated our study into the impact of crosstalk. We show that the tap ratio optimization which increases the number ONUs that can be served in the ring can also exacerbate the effects of linear interchannel crosstalk at the ONU’s downstream signal receivers. We also show that surplus power at the last ONU can be utilized to counter this degraded crosstalk performance by careful tap ratio selection, thereby improving the overall tolerance to linear crosstalk in the system.

Journal

Photonic Network CommunicationsSpringer Journals

Published: May 15, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off