Access the full text.
Sign up today, get DeepDyve free for 14 days.
Integral simplex using decomposition (ISUD) is a method that efficiently solves set partitioning problems. It is an iterative method that starts from a known integer solution and moves through a sequence of integer solutions, decreasing the cost at each iteration. At each iteration, the method decomposes the original problem into a reduced problem (RP) and a complementary problem (CP). Given an integer solution to RP (that is also solution to the original problem), CP finds a descent direction having the minimum ratio between its cost and the number of its positive variables. We loop on until an optimal or near-optimal solution to the original problem is reached. In this paper, we introduce a modified model for CP. The new model finds a descent direction that minimizes the ratio between the cost of the direction and an overestimation of the number of variables taking one in the next solution. The new CP presents higher chances of finding improved integer solutions without branching. We present results for the same large instances (with up to 570,000 columns) as the ones previously used to test ISUD. For all the instances, optimality is always reached with a speedup factor of at least five.
EURO Journal on Computational Optimization – Springer Journals
Published: May 18, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.