Improved genetic parameter estimations in zoysiagrass by implementing post hoc blocking

Improved genetic parameter estimations in zoysiagrass by implementing post hoc blocking Randomized complete block (RCB) design is the most widely used experimental design in biological sciences. As number of treatments increases, the block size become larger and it looses the capacity to control the variance within block, which is its original purpose. A method known as post hoc blocking could be used in these cases to improve the genetic parameter estimation and thus obtain an unbiased assessment of the performance of a given treatment. In trufgrass breeding, as other breeding program, this is a common challenge. The goal of this study was to test the capacity of different post hoc blocking designs to improve the genetic parameter estimation of zoysiagrass (Zoysia spp.). We evaluated two post hoc blocking designs; row–column (R–C) and incomplete block (IB) designs on five genotype trials located in Florida. The results showed that post hoc R–C design had superior model fitting than both the original RCB and the post hoc IB designs when studied at the single measurement level and at the site level. The narrow-sense heritability (0.24–0.40) and the genotype-by-measurement correlation (0.57–0.99) did not change significantly when R–C was compared to the original RCB design. The ranking of the top performing genotypes changed considerably when comparing RCB to R–C design, but the degree depended on the location analyzed. We conclude that the change in the ranking of the top (potentially select individuals) is coming from the better control of intra-block environmental variation, and this could potentially have a significant impact on the breeding selection process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Euphytica Springer Journals

Improved genetic parameter estimations in zoysiagrass by implementing post hoc blocking

Loading next page...
 
/lp/springer_journal/improved-genetic-parameter-estimations-in-zoysiagrass-by-implementing-0MpfuAafsa
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Sciences; Plant Genetics and Genomics; Plant Pathology; Plant Physiology; Biotechnology
ISSN
0014-2336
eISSN
1573-5060
D.O.I.
10.1007/s10681-017-1984-3
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial