Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Improved electrochemical performance of rGO/TiO2 nanosheet composite based electrode for supercapacitor applications

Improved electrochemical performance of rGO/TiO2 nanosheet composite based electrode for... The present work reports the synthesis of a composite of TiO2 nanosheets (NS) with reduced graphene oxide (rGO) for supercapacitor applications. The formation of composite has been achieved via a simple one-pot hydrothermal method. The rGO/TiO2 NS composite was used to fabricate a flexible electrode which, in presence of 1 M H2SO4 as an electrolyte, has shown a high specific capacitance of 233.67 F/g at a current density of 1 A/g within a potential window of 0–1 V. This enhanced supercapacitance of the rGO/TiO2 NS electrode is attributed to the synergistic effects from TiO2 and rGO NS which help in to attain a low equivalent series resistance and enhanced ion diffusion. Furthermore, the fabricated composite electrode has displayed a long-term cyclic stability, retaining a specific capacitance of 98.2% even after 2000 charge–discharge cycles. The proposed rGO/TiO2 NS electrode has delivered high values of energy (32.454 Wh/kg) and power (716.779 W/kg) densities. Interestingly, it is possible to retrieve a sufficiently high energy density of 24.576 Wh/kg which could generate a power density value of as high as 2142.84 W/kg. The above results reveal that the herein proposed thin film composite of rGO/TiO2 NS can offer extraordinary performance as a supercapacitor electrode compared to its nanotubes or nanoparticles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science: Materials in Electronics Springer Journals

Improved electrochemical performance of rGO/TiO2 nanosheet composite based electrode for supercapacitor applications

Loading next page...
 
/lp/springer_journal/improved-electrochemical-performance-of-rgo-tio2-nanosheet-composite-bHpZ9TETuC

References (51)

Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials
ISSN
0957-4522
eISSN
1573-482X
DOI
10.1007/s10854-018-9393-5
Publisher site
See Article on Publisher Site

Abstract

The present work reports the synthesis of a composite of TiO2 nanosheets (NS) with reduced graphene oxide (rGO) for supercapacitor applications. The formation of composite has been achieved via a simple one-pot hydrothermal method. The rGO/TiO2 NS composite was used to fabricate a flexible electrode which, in presence of 1 M H2SO4 as an electrolyte, has shown a high specific capacitance of 233.67 F/g at a current density of 1 A/g within a potential window of 0–1 V. This enhanced supercapacitance of the rGO/TiO2 NS electrode is attributed to the synergistic effects from TiO2 and rGO NS which help in to attain a low equivalent series resistance and enhanced ion diffusion. Furthermore, the fabricated composite electrode has displayed a long-term cyclic stability, retaining a specific capacitance of 98.2% even after 2000 charge–discharge cycles. The proposed rGO/TiO2 NS electrode has delivered high values of energy (32.454 Wh/kg) and power (716.779 W/kg) densities. Interestingly, it is possible to retrieve a sufficiently high energy density of 24.576 Wh/kg which could generate a power density value of as high as 2142.84 W/kg. The above results reveal that the herein proposed thin film composite of rGO/TiO2 NS can offer extraordinary performance as a supercapacitor electrode compared to its nanotubes or nanoparticles.

Journal

Journal of Materials Science: Materials in ElectronicsSpringer Journals

Published: Jun 5, 2018

There are no references for this article.