Improved algorithms for resource allocation under varying capacity

Improved algorithms for resource allocation under varying capacity We consider the problem of scheduling a set of jobs on a system that offers certain resource, wherein the amount of resource offered varies over time. For each job, the input specifies a set of possible scheduling instances, where each instance is given by starting time, ending time, profit and resource requirement. A feasible solution selects a subset of job instances such that at any timeslot, the total requirement by the chosen instances does not exceed the resource available at that timeslot, and at most one instance is chosen for each job. The above problem falls under the well-studied framework of unsplittable flow problem on line. The generalized notion of scheduling possibilities captures the standard setting concerned with release times and deadlines. We present improved algorithms based on the primal–dual paradigm, where the improvements are in terms of approximation ratio, running time and simplicity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Scheduling Springer Journals

Improved algorithms for resource allocation under varying capacity

Loading next page...
 
/lp/springer_journal/improved-algorithms-for-resource-allocation-under-varying-capacity-HJxiwybiF8
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Business and Management; Operations Research/Decision Theory; Calculus of Variations and Optimal Control; Optimization; Optimization; Artificial Intelligence (incl. Robotics); Supply Chain Management
ISSN
1094-6136
eISSN
1099-1425
D.O.I.
10.1007/s10951-017-0515-3
Publisher site
See Article on Publisher Site

Abstract

We consider the problem of scheduling a set of jobs on a system that offers certain resource, wherein the amount of resource offered varies over time. For each job, the input specifies a set of possible scheduling instances, where each instance is given by starting time, ending time, profit and resource requirement. A feasible solution selects a subset of job instances such that at any timeslot, the total requirement by the chosen instances does not exceed the resource available at that timeslot, and at most one instance is chosen for each job. The above problem falls under the well-studied framework of unsplittable flow problem on line. The generalized notion of scheduling possibilities captures the standard setting concerned with release times and deadlines. We present improved algorithms based on the primal–dual paradigm, where the improvements are in terms of approximation ratio, running time and simplicity.

Journal

Journal of SchedulingSpringer Journals

Published: Feb 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off