Imprinting in plants

Imprinting in plants This review discusses the modern issues in epigenetic regulation in plants related to the imprinting at the levels of genome, locus, and gene. The data described follow the historical order: from the beginning of research into non-crossability of plant forms with different ploidies to the recent communications about allelic imprinting at r1 locus of maize and the control of synthesis of storage proteins with a high forage value. The classical experiments of Kermicle and Lin on the cytogenetic confirmation of the role of parental genome ratio in the endosperm in a successful development of viable caryopses are described in detail. Uniqueness of the experimental technique used by these authors is emphasized. The variants for overcoming the effect of imprinted signal in apomicts and plants with a tetrasporic embryo sac are considered. A considerable attention is paid to the imprinting in the species with polyploid series and to the hypothesis of endosperm balance number. The issues of potential practical application of imprinting in breeding practice are discussed. The results obtained in this direction demonstrate the ways to increase the forage value of maize zeins. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Imprinting in plants

Loading next page...
 
/lp/springer_journal/imprinting-in-plants-FhV7qlA0Fd
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2006 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Microbial Genetics and Genomics; Animal Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795406090109
Publisher site
See Article on Publisher Site

Abstract

This review discusses the modern issues in epigenetic regulation in plants related to the imprinting at the levels of genome, locus, and gene. The data described follow the historical order: from the beginning of research into non-crossability of plant forms with different ploidies to the recent communications about allelic imprinting at r1 locus of maize and the control of synthesis of storage proteins with a high forage value. The classical experiments of Kermicle and Lin on the cytogenetic confirmation of the role of parental genome ratio in the endosperm in a successful development of viable caryopses are described in detail. Uniqueness of the experimental technique used by these authors is emphasized. The variants for overcoming the effect of imprinted signal in apomicts and plants with a tetrasporic embryo sac are considered. A considerable attention is paid to the imprinting in the species with polyploid series and to the hypothesis of endosperm balance number. The issues of potential practical application of imprinting in breeding practice are discussed. The results obtained in this direction demonstrate the ways to increase the forage value of maize zeins.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Sep 21, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off