Imprinting and epigenetic changes in the early embryo

Imprinting and epigenetic changes in the early embryo Imprinted genes are epigenetically regulated so that only one allele is expressed in a parent-of-origin-dependent manner. Although they represent a small subset of the mammalian genome, imprinted genes are essential for normal development. The regulatory mechanisms underlying imprinting are complex and have been the subject of extensive investigation. DNA methylation is the best-established epigenetic mark that is critical for the allele-specific expression of imprinted genes. This mark must be correctly established in the germline, maintained throughout life, and erased and reestablished in the germline the next generation. These events coincide with the genome-wide epigenetic reprogramming that occurs during gametogenesis and early embryogenesis; therefore, the establishment and maintenance of DNA methylation must be tightly regulated. Studies on enzymes that participate in both de novo methylation and its maintenance (i.e., the DNMT family) have provided information on how methylation influences imprinting. However, many aspects of the regulation of DNA methylation are unknown, including how methylation complexes are targeted and the molecular mechanisms underlying DNA demethylation. In this review we focus on the epigenetic changes that occur in the germline and early embryo, with an emphasis on imprinting. We summarize recent findings on factors influencing DNA methylation establishment, maintenance, and erasure that have further elucidated the mechanisms of imprinting, while highlighting topics that require further investigation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Imprinting and epigenetic changes in the early embryo

Loading next page...
 
/lp/springer_journal/imprinting-and-epigenetic-changes-in-the-early-embryo-g6qsR0OL1v
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Life Sciences; Zoology ; Anatomy ; Cell Biology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-009-9225-2
Publisher site
See Article on Publisher Site

Abstract

Imprinted genes are epigenetically regulated so that only one allele is expressed in a parent-of-origin-dependent manner. Although they represent a small subset of the mammalian genome, imprinted genes are essential for normal development. The regulatory mechanisms underlying imprinting are complex and have been the subject of extensive investigation. DNA methylation is the best-established epigenetic mark that is critical for the allele-specific expression of imprinted genes. This mark must be correctly established in the germline, maintained throughout life, and erased and reestablished in the germline the next generation. These events coincide with the genome-wide epigenetic reprogramming that occurs during gametogenesis and early embryogenesis; therefore, the establishment and maintenance of DNA methylation must be tightly regulated. Studies on enzymes that participate in both de novo methylation and its maintenance (i.e., the DNMT family) have provided information on how methylation influences imprinting. However, many aspects of the regulation of DNA methylation are unknown, including how methylation complexes are targeted and the molecular mechanisms underlying DNA demethylation. In this review we focus on the epigenetic changes that occur in the germline and early embryo, with an emphasis on imprinting. We summarize recent findings on factors influencing DNA methylation establishment, maintenance, and erasure that have further elucidated the mechanisms of imprinting, while highlighting topics that require further investigation.

Journal

Mammalian GenomeSpringer Journals

Published: Sep 16, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off