Impregnation of Polycarbonate by Paramagnetic Probe 2,2,6,6-Tetramethyl-4-Hydroxy-Piperidine-1-Oxyl (TEMPOL) in Supercritical CO2

Impregnation of Polycarbonate by Paramagnetic Probe... The aim of the research was to test the advantages of spin probe electron paramagnetic resonance approach in studying polymers impregnation with organic molecules in supercritical CO2 (scCO2) The impregnation of bisphenol A polycarbonate with the spin probe TEMPOL was carried out at 307–343 K and 11.6–35 MPa. The mean and local concentrations of the spin probe in the polymer were evaluated. An increase in temperature and pressure resulted in a more even distribution of the dopant in the polymer matrix. It was observed that, at 307 K and 19.6 MPa, the spin probe was located only near the surface of the sample. Local mobility of the spin probe molecules was found to be similar in polycarbonate films impregnated in scCO2 and cast from dichloroethane solution. It was shown that changes in the structure of the surface and bulk of the polymer detected by the atomic force and optical polarization microscopy are not directly related with the distribution of the dopant molecules and their average content in the polymer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Magnetic Resonance Springer Journals

Impregnation of Polycarbonate by Paramagnetic Probe 2,2,6,6-Tetramethyl-4-Hydroxy-Piperidine-1-Oxyl (TEMPOL) in Supercritical CO2

Loading next page...
 
/lp/springer_journal/impregnation-of-polycarbonate-by-paramagnetic-probe-2-2-6-6-OCaqVtZk1f
Publisher
Springer Vienna
Copyright
Copyright © 2018 by Springer-Verlag GmbH Austria, part of Springer Nature
Subject
Physics; Solid State Physics; Spectroscopy/Spectrometry; Atoms and Molecules in Strong Fields, Laser Matter Interaction; Physical Chemistry; Organic Chemistry
ISSN
0937-9347
eISSN
1613-7507
D.O.I.
10.1007/s00723-018-0984-3
Publisher site
See Article on Publisher Site

Abstract

The aim of the research was to test the advantages of spin probe electron paramagnetic resonance approach in studying polymers impregnation with organic molecules in supercritical CO2 (scCO2) The impregnation of bisphenol A polycarbonate with the spin probe TEMPOL was carried out at 307–343 K and 11.6–35 MPa. The mean and local concentrations of the spin probe in the polymer were evaluated. An increase in temperature and pressure resulted in a more even distribution of the dopant in the polymer matrix. It was observed that, at 307 K and 19.6 MPa, the spin probe was located only near the surface of the sample. Local mobility of the spin probe molecules was found to be similar in polycarbonate films impregnated in scCO2 and cast from dichloroethane solution. It was shown that changes in the structure of the surface and bulk of the polymer detected by the atomic force and optical polarization microscopy are not directly related with the distribution of the dopant molecules and their average content in the polymer.

Journal

Applied Magnetic ResonanceSpringer Journals

Published: Feb 8, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial